

ON THE GIBBS PHENOMENON FOR NORLUND METHOD OF SUMMABILITY

Authors \& Affiliation:

S. N. Singh

Department of Mathematics, Deoghar College, DeogharINDIA.

Abstract

In this paper, we consider a monotonic non-increasing sequence $\left\{p_{n}\right\}$ and find the condition under which the Norlund summability method ($\mathrm{N}, \mathrm{p}_{\mathrm{n}}$) shows Gibbs phenomenon.

Correspondence To:
S. N. Singh

Key words:
Approximation,
Convergence,Fourier series,
Norlund summability.
© 2013. The Authors.
Published under Caribbean
Journal of Science and
Technology
ISSN 0799-3757
http://caribjscitech.com/

Research Article

S. N. Singh et al, Carib.j.SciTech,2013,Vol.1,166-171

1. INTRODUCTION: In the theory of approximation, it is important to study about the limit of convergence of approximating function and the limit of approximant. The relating study for a discontinuous function $\phi(\mathrm{x})$, defined as $\phi(\mathrm{x})=(\pi-\mathrm{x}) / 2,0<\mathrm{x}<2 \pi$; $=0, x=0,2 \pi$, has been firstly investigated by $J . W$. Gibbs by taking partial sum $s_{n}(x)$ of the Fourier series of $\phi(x)$ in the neighbourhood of a point of discontinuity of $\phi(x)$. Since

$$
\sum_{\mathrm{k}=1}^{\infty}(\sin \mathrm{kx}) / \mathrm{k}=(\pi-\mathrm{x}) / 2=\phi(\mathrm{x}), \quad 0<\mathrm{x}<2 \pi,
$$

we see that the series is not uniformly convergent in the neighbourhood of $x=0$. Let $x>0$, we have

$$
\mathrm{s}_{\mathrm{n}}(\mathrm{x})=(-\mathrm{x} / 2)+\int_{0}^{\mathrm{x}} \mathrm{D}_{\mathrm{n}}(\mathrm{t}) \mathrm{dt},
$$

where $D_{n}(t)=\sin ((n+1) / 2) t / 2 \sin (t / 2)$. Since the integral

$$
(2 / \pi) \int_{0}^{\xi}(\operatorname{sinnt} / t) d t, \quad 0 \leq \xi \leq \pi,
$$

is uniformly bounded in n and ξ, we have

$$
\begin{equation*}
\mathrm{s}_{\mathrm{n}}(\mathrm{x})+(\mathrm{x} / 2)=\int_{0}^{\mathrm{nx}}(\sin \mathrm{t} / \mathrm{t}) \mathrm{dt}+\mathrm{o}(1) \tag{1.1}
\end{equation*}
$$

uniformly in $0 \leq \mathrm{x} \leq \pi$. Thus $\mathrm{s}_{\mathrm{n}}(\mathrm{x})$ are uniformly bounded, but the curve of approximation overshoot the mark in the neighbourhood of $x=0$ in the interval ($0, \pi$] (cf. Knopp [4], p. 379 for $n=9$). The smoothening of convergence of Fourier series is quite important for filter design (cf. Hamming [2]). More precisely, we consider the integral of (sint/t) over the intervals ($\mathrm{k} \pi$, $(\mathrm{k}+1) \pi), \mathrm{k}=0,1,2, \ldots$. We know that these integrals decrease in absolute value and are of alternating sign (cf. Zygmund [5], p . 61) for $k=0,1,2, \ldots$, the curve

$$
y=\int_{0}^{x}(\sin t / t) d t=G(x), \text { say, }
$$

takes maxima with $M_{1}>M_{3}>M_{5}>\ldots$, at the points $\pi, 3 \pi, 5 \pi, \ldots$, and minima $m_{2},<m_{4}<m_{6}<\ldots$, at the points $2 \pi, 4 \pi, 6 \pi, \ldots$. From (1.1), we obtain

$$
\mathrm{s}_{\mathrm{n}}(\pi / \mathrm{n}) \rightarrow \int_{0}^{\pi}(\sin t / \mathrm{t}) \mathrm{dt}>(\pi / 2)
$$

Thus, though $s_{n}(x)$ tends to $\phi(x)$ at every fixed $x, 0<x<2 \pi$, the curve $y=s_{n}(x)$, which pass through the point $(0,0)$ condense to the interval $0 \leq y \leq G(\pi)$ of the y-axis, the ratio of whose length to that of the interval $0 \leq y \leq \phi(+0)=(\pi / 2)$ is

$$
(2 / \pi) \int_{0}^{\pi}(\sin t / t) \mathrm{dt}=1.179 \ldots
$$

Similarly, to the left of $x=0$, the curve $y=s_{n}(x)$ condense to the interval $-G(\pi) \leq y \leq 0$. This behaviour is called Gibbs phenomenon i.e., if the ratio $\left[s_{n}(+0)-s_{n}(0)\right] /[\phi(+0)-\phi(0)]>1$, then $s_{n}(x)$ show Gibbs phenomenon in the right of $x=0$. The generalized form of Gibbs phenomenon is described in Zygmund ([5], p. 61). The Gibbs phenomenon for (C, α) method, $0<\alpha<$ 1, was studied by Zygmund ([5], p.110) and the following was obtained:

Theorem A. There is an absolute constant $\alpha_{0}, 0<\alpha_{0}<1$, with the following property: if $f(x)$ has a simple discontinuity at a point ξ, the means $\sigma_{\mathrm{n}}{ }^{\alpha}(\mathrm{x} ; \mathrm{f})$ show Gibbs phenomenon at ξ for $\alpha<\alpha_{0}$ but not for $\alpha \geq \alpha_{0}$.

In this paper, we consider a more general method ($\mathrm{N}, \mathrm{p}_{\mathrm{n}}$) than (C, α) method, $\alpha>-1$. The concerned $\left(\mathrm{N}, \mathrm{p}_{\mathrm{n}}\right)$ methods are those which sum the Fourier series at a point of discontinuity of the function. The following is due to Hille and Tamarkin [3]:

Theorem B. Let $\left\{p_{n}\right\}$ be a non-negative, non-increasing sequence and let $t_{n}(x)$ denote the (N, p_{n}) mean of $s_{n}(x)$. Then for $[\mathrm{f}(\mathrm{x}+\mathrm{t})+\mathrm{f}(\mathrm{x}-\mathrm{t})-\{\mathrm{f}(\mathrm{x}+0)+\mathrm{f}(\mathrm{x}-0)\}]=\mathrm{o}(1)$, as $\mathrm{t} \rightarrow 0$, then $\mathrm{t}_{\mathrm{n}}(\mathrm{x}) \rightarrow(1 / 2)[\mathrm{f}(\mathrm{x}+0)+\mathrm{f}(\mathrm{x}-0)]$ if and only if

$$
\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{P}_{\mathrm{k}} / \mathrm{k}\right) \leq \mathrm{MP}_{\mathrm{n}}, \mathrm{n}=1,2, \ldots,
$$

where M is some positive constant. We know that the condition (1.2) for the sequence $\left\{p_{n}\right\}$ is equivalent to the condition (cf. Dikshit and Kumar [1]),

S. N. Singh et al, Carib.j.SciTech,2013,Vol.1,166-171

$$
\begin{align*}
& \infty \\
& \mathrm{K} \geq \mathrm{P}_{\mathrm{m}} \sum_{\mathrm{n}=\mathrm{m}}^{\infty}\left(1 / \mathrm{nP} \mathrm{P}_{\mathrm{n}}\right), \tag{1.3}
\end{align*}
$$

where K is some positive constant. From Lemma 1, we find that the condition (1.3) is equivalent to $\left(\mathrm{P}_{\mathrm{k}} / \mathrm{P}_{\mathrm{n}}\right) \leq(\mathrm{k} / \mathrm{n})^{\alpha}, 1 \leq \mathrm{k} \leq \mathrm{n}$, for some α in $(0,1)$. Thus, a condition of the above type is natural one for considering Gibbs phenomenon of ($\mathrm{N}, \mathrm{p}_{\mathrm{n}}$) method. In fact, we prove the following theorem:

Theorem 1. Let $\left\{\mathrm{p}_{\mathrm{n}}\right\}$ be a non-negative and non-increasing sequence. Let α be a number such that $\left(\mathrm{P}_{\mathrm{k}} / \mathrm{P}_{\mathrm{n}}\right) \leq(\mathrm{k} / \mathrm{n})^{\alpha}, 1 \leq$ $\mathrm{k} \leq \mathrm{n}$, then there exists a constant $\alpha_{0}, 0<\alpha_{0}<1$ such that the $\left(\mathrm{N}, \mathrm{p}_{\mathrm{n}}\right)$ method shows Gibbs phenomenon for $\alpha<\alpha_{0}$, but not for $\alpha \geq \alpha_{0}$ at a point of simple discontinuity ξ of $f(x)$.

We need the following lemmas:
Lemma 1. Let $\left\{p_{n}\right\}$ be a non-negative and non-increasing sequence and let

$$
\mathrm{P}_{\mathrm{m}} \sum_{\mathrm{n}=\mathrm{m}}^{\infty}\left(1 / \mathrm{nP} \mathrm{P}_{\mathrm{n}}\right) \leq \mathrm{K}, \quad \mathrm{~m}=1,2, \ldots,
$$

where K is some positive constant, then $\left(\mathrm{P}_{\mathrm{m}} / \mathrm{P}_{\mathrm{n}}\right) \leq(\mathrm{m} / \mathrm{n})^{\delta}$, for some $0<\delta \leq 1,1 \leq \mathrm{m} \leq[\mathrm{n} / \mathrm{c}]$, c is some fixed positive integer.

Proof. For any integer k, we have

$$
\begin{aligned}
\mathrm{K} & \geq \mathrm{P}_{\mathrm{m}}{\underset{\mathrm{n}=\mathrm{m}}{\infty}\left(1 / \mathrm{nP} \mathrm{P}_{\mathrm{n}}\right) \geq \mathrm{P}_{\mathrm{m}}{\underset{\mathrm{n}=\mathrm{m}}{\mathrm{~km}}\left(1 / \mathrm{nP} \mathrm{P}_{\mathrm{n}}\right)}}^{\geq\left(\mathrm{P}_{\mathrm{m}} / \mathrm{P}_{\mathrm{km}}\right) \text { logk. }}
\end{aligned}
$$

That is

$$
\begin{equation*}
\left(\mathrm{P}_{\mathrm{km}} / \mathrm{P}_{\mathrm{m}}\right) \geq\left(\log _{4} \mathrm{k} \log 4^{\mathrm{e}} / \mathrm{K}\right) \geq 4, \text { for large } \mathrm{k} \geq \mathrm{k}_{0} \tag{1.4}
\end{equation*}
$$

We take for convenience $\mathrm{k}_{0} \geq 4$. For a given sufficiently large n , we can find a fixed integer $\mathrm{c} \geq \mathrm{k}_{0}$, and r such that

$$
c^{\mathrm{r}+(1 / 2)} \mathrm{m} \leq \mathrm{n}<\mathrm{c}^{\mathrm{r}+1} \mathrm{~m} .
$$

We have

$$
\begin{equation*}
\left(\mathrm{P}_{\mathrm{n}} / \mathrm{P}_{\mathrm{m}}\right)=\left(\mathrm{P}_{\mathrm{n}} / \mathrm{P}_{\mathrm{c}} \mathrm{r}_{\mathrm{m}}\right)\left(\mathrm{P}_{\mathrm{c}} \mathrm{r}_{\mathrm{m}} / \mathrm{P}_{\mathrm{m}}\right) \geq\left(\mathrm{P}_{\mathrm{n}} / \mathrm{P}_{\mathrm{c}} \mathrm{r}_{\mathrm{m}}\right) 4^{\mathrm{r}}, \tag{1.5}
\end{equation*}
$$

by a repeated application of the fact that $\mathrm{P}_{\mathrm{km}} / \mathrm{P}_{\mathrm{m}} \geq 4$.
We can find a number $\mu,(1 / 2) \leq \mu<1$, such that $n=c^{r+\mu} m$. We have

$$
\begin{equation*}
\mathrm{r}=\log _{4}(\mathrm{n} / \mathrm{m})^{\delta}-\mu \tag{1.6}
\end{equation*}
$$

where $\delta=\left(1 / \log _{4} \mathrm{c}\right)$. Obviously, $\delta \leq 1$.
From (1.5) and (1.6), we get

$$
\begin{align*}
\left(\mathrm{P}_{\mathrm{n}} / \mathrm{P}_{\mathrm{m}}\right) \geq & \geq \frac{\mathrm{P}_{\mathrm{c}}^{\mathrm{r}+\mu} \mathrm{m}}{\mathrm{P}_{\mathrm{c}}{ }^{\mathrm{r}} \mathrm{~m}} \quad \log _{4}(\mathrm{n} / \mathrm{m})^{\delta}-\mu \\
& =\frac{\mathrm{P}_{\mathrm{c}}{ }^{\mathrm{r}+\mu} \mathrm{m}}{\mathrm{P}_{\mathrm{c}}{ }^{\mathrm{r}} \mathrm{~m}} \quad(4)^{-\mu}(\mathrm{n} / \mathrm{m})^{\delta} . \tag{1.7}
\end{align*}
$$

Again from (1.3), we have

$$
\begin{aligned}
& \mathrm{K} \geq \mathrm{P}_{\mathrm{c}}{ }^{\mathrm{r}} \mathrm{~m} \quad \mathrm{\Sigma}_{\mathrm{n}=\mathrm{c}^{\mathrm{r}} \mathrm{~m}}^{\mathrm{r}^{\mathrm{r}+\mu} \mathrm{m}}(1 / \mathrm{nPn}) \\
& P_{c}{ }^{\mathrm{r}} \mathrm{~m}
\end{aligned}
$$

Research Article

S. N. Singh et al, Carib.j.SciTech,2013,Vol.1,166-171

$$
\geq \frac{P_{\mathrm{P}_{\mathrm{c}}^{\mathrm{r}+\mu} \mathrm{m}}}{} \log \mathrm{c}^{\mu}
$$

that is

$$
\frac{P_{c}{ }^{r+\mu} m}{P_{c}{ }^{r} m} \geq\left(\log c^{\mu} / K\right)
$$

Now, from (1.7) and (1.8), we obtain

$$
\begin{align*}
\left(\mathrm{P}_{\mathrm{n}} / \mathrm{P}_{\mathrm{m}}\right) \geq & \frac{\operatorname{logc}^{\mu}}{\mathrm{K}} 4^{-\mu}(\mathrm{n} / \mathrm{m})^{\delta} \\
& \geq 4 \mu 4^{-\mu}(\mathrm{n} / \mathrm{m})^{\delta} \geq(\mathrm{n} / \mathrm{m})^{\delta} \tag{1.9}
\end{align*}
$$

by the fact that $4^{\mu} \leq 4 \mu$, for $(1 / 2) \leq \mu<1$. Thus (1.9) shows that $\left(P_{m} / P_{n}\right) \leq(m / n)^{\delta}, 0<\delta \leq 1$, $1 \leq \mathrm{m} \leq[\mathrm{n} / \mathrm{c}]$.

This proves the lemma.
Lemma 2. Given any $m>0$, there exists a $\delta(m)>0$ and $n_{0}(m)$ such that

$$
\sigma_{\mathrm{n}}(\mathrm{x})<(\pi / 2)-\delta \quad \text { for } 0 \leq \mathrm{x} \leq(\mathrm{m} / \mathrm{n}), \mathrm{n}>\mathrm{n}_{0}
$$

Lemma 2 is contained in Zygmund ([5], p.111).
Proof of the Theorem. Since the partial sum $\mathrm{s}_{\mathrm{n}}(\mathrm{x})$ is uniformly summable ($\mathrm{N}, \mathrm{p}_{\mathrm{n}}$) at every point of continuity (cf. Hille and Tamarkin [3]), so to prove the theorem, we prove it for the function $\mathrm{f}(\mathrm{x}) \sim \sin \mathrm{x}+(\sin 2 \mathrm{x} / 2)+\ldots$, at $\xi=0$. Observing that s_{n}, $=$ $\cos x+\cos 2 x+\ldots$, we get

$$
\left.\mathrm{s}_{\mathrm{n}}(\mathrm{x})=\int_{0}^{\mathrm{x}} \underset{\mathrm{k}=1}{\mathrm{n}} \sum_{\mathrm{x}}^{\mathrm{n}} \operatorname{coskt}\right) \mathrm{dt}=((\pi-\mathrm{x}) / 2)-\int_{\mathrm{x}}^{\mathrm{D}_{\mathrm{n}}(\mathrm{t}) \mathrm{dt},}
$$

and

$$
\left.\mathrm{t}_{\mathrm{n}}^{\mathrm{p}}(\mathrm{x})=((\pi-\mathrm{x}) / 2)-\left(1 / 2 \mathrm{P}_{\mathrm{n}}\right) \quad \sum_{\mathrm{k}=0} \int_{\mathrm{x}}^{\mathrm{n}} \mathrm{p}_{\mathrm{n}-\mathrm{k}}^{\pi} \frac{\sin (\mathrm{k}+(1 / 2)) \mathrm{t}}{\sin (\mathrm{t} / 2)} \mathrm{dt}\right)
$$

We write

$$
\begin{align*}
& \left(1 / 2 \mathrm{P}_{\mathrm{n}}\right)\left(\sum_{\mathrm{k}=0}^{[\mathrm{n} / 2]}+\sum_{\mathrm{k}=[\mathrm{n} / 2]+1}^{\mathrm{n}}\right) \mathrm{p}_{\mathrm{n}-\mathrm{k}}(\sin (\mathrm{k}+(1 / 2) \mathrm{t}) / \sin (\mathrm{t} / 2)) \\
& =\Sigma_{1}+\Sigma_{2} \text {, say. } \tag{1.10}
\end{align*}
$$

Applying Abel's Lemma, we find that

$$
\left|\Sigma_{1}\right| \leq 1 / \mathrm{n}(\sin (\mathrm{t} / 2))^{2},
$$

Hence

$$
\left|\int_{\mathrm{x}}^{\pi} \Sigma_{1} \mathrm{dt}\right| \leq(2 / \mathrm{n}) \cot (\mathrm{x} / 2) .
$$

Again using mean value theorem, we have for some $x<\xi<\pi$

$$
\begin{equation*}
\left|\int_{0} \Sigma_{2} \mathrm{dt}\right| \leq \mathrm{K}\left(\mathrm{P}_{1 / \mathrm{x}} / \mathrm{nP}_{\mathrm{n}} \sin (\mathrm{x} / 2)\right) \tag{1.12}
\end{equation*}
$$

since $P_{1 / \xi} \leq P_{1 / x}$ for $x<\xi$.
Combining (1.10), (1.11) and (1.12), we get

$$
\begin{equation*}
\mathrm{t}_{\mathrm{n}}^{\mathrm{p}}(\mathrm{x}) \leq(\pi-\mathrm{x}) / 2+(2 / \mathrm{n}) \cot (\mathrm{x} / 2)+\mathrm{K}\left(\mathrm{P}_{1 / \mathrm{x}} / \mathrm{nP}_{\mathrm{n}} \sin (\mathrm{x} / 2)\right) \tag{1.13}
\end{equation*}
$$

By the hypothesis that $\left(\mathrm{P}_{\mathrm{k}} / \mathrm{P}_{\mathrm{n}}\right) \leq(\mathrm{k} / \mathrm{n})^{\alpha}, 0<\alpha<1$, we see that the second term in (1.13) dominate the last term. Thus, if $n x$ is sufficiently large, say $n x>m, n \geq n_{1}$ and $n x^{2}>1$, we find that

$$
\begin{equation*}
\left|\mathrm{t}_{\mathrm{n}}^{\mathrm{p}}(\mathrm{x})\right| \leq(\pi / 2) \quad \text { for }(\mathrm{n} / \mathrm{m}) \leq \mathrm{x} \leq \pi \tag{1.14}
\end{equation*}
$$

Now, we show that if the sequence $\left\{p_{n}\right\}$ is suitably chosen then the inequality (1.14) is true for other values of x, i.e., for $0 \leq x \leq(m / n)$. To see this, we consider $t_{n}{ }^{p}(x)-\sigma_{n}(x)$, where $\sigma_{n}(x)$ denote the $(C, 1)$ mean of $s_{n}(x)$, we have

$$
\begin{aligned}
\left|t_{n}{ }^{p}(x)-\sigma_{n}(x)\right|= & \left|\sum_{k=0}^{n} \frac{P_{n-k}}{P_{n}} \frac{\operatorname{sinkx}}{k}-\sum_{k=0}^{n} \frac{n-k+1}{n+1} \frac{\operatorname{sinkx}}{k}\right| \\
& \leq \sum_{k=0}^{n} \sum_{P_{n}}^{n-k+1}\left(\frac{P_{n-k}}{n-k+1}-\frac{P_{n}}{n+1}\right),
\end{aligned}
$$

since $\left(\mathrm{P}_{\mathrm{n}} / \mathrm{n}\right)$ is non-increasing for $\left\{\mathrm{p}_{\mathrm{n}}\right\}$. We have

$$
\left|\mathrm{t}_{\mathrm{n}}^{\mathrm{p}}(\mathrm{x})-\sigma_{\mathrm{n}}(\mathrm{x})\right| \leq \mathrm{x}\left[\left(\mathrm{P}_{\mathrm{n}}{ }^{1} / \mathrm{P}_{\mathrm{n}}\right)-((\mathrm{n}+2) / 2)\right]
$$

Now,

$$
\begin{aligned}
\left(\mathrm{P}_{\mathrm{n}}{ }^{1} / \mathrm{P}_{\mathrm{n}}\right) & =\sum_{\mathrm{k}=0}^{\mathrm{n}}\left(\mathrm{P}_{\mathrm{k}} / \mathrm{P}_{\mathrm{n}}\right)=\sum_{\mathrm{k}=0}^{\mathrm{n}} \int_{\mathrm{k}}^{\mathrm{k}+1}\left(\mathrm{P}_{\mathrm{x}} / \mathrm{P}_{\mathrm{n}}\right) \mathrm{dx} \\
& \leq \int_{0}^{\mathrm{n}+1}(\mathrm{x} / \mathrm{n})^{\alpha} \mathrm{dx}=\left[(\mathrm{n}+1)^{\alpha+1} /(\alpha+1) \mathrm{n}^{\alpha}\right] .
\end{aligned}
$$

We have

$$
\begin{aligned}
\left|t_{n}^{p}(x)-\sigma_{n}(x)\right| \leq & x\left[\frac{(n+1)^{\alpha+1}}{\left.(\alpha+1) n^{\alpha}\right]}-\frac{n+2}{2}\right] \\
& =\frac{n x(1-\alpha)}{2(\alpha+1)}+x\left[\frac{(n+1)^{\alpha+1}-n^{\alpha+1}}{(\alpha+1) n^{\alpha}}-1\right] .
\end{aligned}
$$

Since $(\mathrm{n}+1)^{\alpha+1}-\mathrm{n}^{\alpha+1} \leq(2 \mathrm{n})^{\alpha}$ and $2^{\alpha} \leq \alpha+1$ for $0 \leq \alpha \leq 1$, we have

$$
\left|\mathrm{t}_{\mathrm{n}}^{\mathrm{p}}(\mathrm{x})-\sigma_{\mathrm{n}}(\mathrm{x})\right| \leq[\mathrm{nx}(1-\alpha) / 2(\alpha+1)] .
$$

That is

$$
\mathrm{t}_{\mathrm{n}}^{\mathrm{p}}(\mathrm{x}) \leq \sigma_{\mathrm{n}}(\mathrm{x})+(\mathrm{nx} / 2)(1-\alpha)
$$

By Lemma 2, we have

$$
\mathrm{t}_{\mathrm{n}}{ }^{\mathrm{p}}(\mathrm{x}) \leq(\pi / 2)-\delta(\mathrm{m})+\left(\mathrm{m}_{1} / 2\right)(1-\alpha), 0 \leq \mathrm{nx} \leq \mathrm{m}_{1} .
$$

Now, if we take α, such that $(1-\alpha) m_{1} / 2-\delta\left(m_{1}\right)<0$, then

$$
\mathrm{t}_{\mathrm{n}}^{\mathrm{p}}(\mathrm{x}) \leq(\pi / 2), \text { for } 0 \leq \mathrm{nx} \leq \mathrm{m}_{1} .
$$

In order to show that for positive and small enough α, the Gibbs phenomenon occurs, and it does not occur for $\alpha \geq 1$, we consider the difference $\mathrm{t}_{\mathrm{n}}{ }^{\mathrm{p}}(\mathrm{x})-\mathrm{s}_{\mathrm{n}}(\mathrm{x})$. We have

$$
\left|\mathrm{t}_{\mathrm{n}}{ }^{\mathrm{p}}(\mathrm{x})-\mathrm{s}_{\mathrm{n}}(\mathrm{x})\right| \leq \mathrm{x}\left(\mathrm{n}-\left(\mathrm{P}_{\mathrm{n}}{ }^{1} / \mathrm{P}_{\mathrm{n}}\right)\right)<\mathrm{nx} \alpha .
$$

Thus

$$
\left|\mathrm{t}_{\mathrm{n}}^{\mathrm{p}}(\pi / \mathrm{n})-\mathrm{s}_{\mathrm{n}}(\pi / \mathrm{n})\right| \leq \pi \alpha, \quad \text { for } 0<\alpha<1 .
$$

Consequently,

$$
\mathrm{s}_{\mathrm{n}}(\pi / \mathrm{n})-\pi \alpha \leq \quad \mathrm{t}_{\mathrm{n}}^{\mathrm{p}}(\pi / \mathrm{n}) \leq \pi \alpha+\mathrm{s}_{\mathrm{n}}(\pi / \mathrm{n})
$$

From the above inequality, we see that for small α

$$
\operatorname{Liminf}_{\mathrm{n} \rightarrow \infty} \mathrm{t}_{\mathrm{n}}^{\mathrm{p}}(\pi / \mathrm{n})>(\pi / 2),
$$

by the fact that $\mathrm{S}_{\mathrm{n}}(\pi / \mathrm{n})$ tends to a limit greater than $(\pi / 2)$.
Hence the Gibbs phenomenon occurs for small values of α. This proves that there exists $\alpha_{0}, 0<\alpha_{0}<1$, such that for $\alpha<\alpha_{0}$ the Gibbs phenomenon exists, while for $\alpha>\alpha_{0}$ it does not exist.

I would like to thank Professor Arun Kumar, Department of Mathematics, R. D. University, Jabalpur for his valuable comments and suggestions.

REFERENCES

1. Dikhit H.P. and Kumar A., Absolute total effectiveness of (N, p_{n}) means I, Math. Proc. Camb. Phil. Soc. (1975), 77103.
2. Hamming, R. W., Digital Filters, Prentice-Hall, Englewwod Cliffs, N. J., 1977.
3. Hille E. and Tamarkin J. D., On the Summabilty of Fourier Series I, Trans. Amer. Math. Soc. 34(1932), 757-783.
4. Knopp, K., Theory and Applications of Infinite Series, Blackie and Son Limited, London and Glasgow (1947).
5. Zygmund, A., Trigonometric Series Vol. -I, Cambridge University Press, London, New York (1968).
