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Abstract 
 
In the present paper the transplantation operators for the Hankel type transform are 
considered and their boundedness on the real Hardy space is established. As its 
application, we have obtained the Hormander-Mihlin type multiplier theorem for the 
Hankel transform on the real Hardy space. 
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1.Introduction  

The Hankel type transform of ℋఈ,ఉ݂ of order ߙ −   of a function on the open half-line (0,∞) is defined by ߚ

ℋఈ,ఉ݂(ݕ) = න݂(ݐ) (ݐݕ)ఈାఉܬఈିఉ(ݐݕ) ݀ݕ   , ݐ > 0 ,
∞

଴

 

where ܬఈିఉ is the Bessel type function of the first kind of order ߙ − ߙ The Bessel functions with .ߚ − ߚ = − ଵ
ଶ
  and ߙ − ߚ = ଵ

ଶ
 are 

ଵଶିܬ
(ݖ)  = ඨ 2

ݖߨ , ݖݏ݋ܿ  ଵܬ
ଶ

(ݖ) =  ඨ
2
ݖߨ  ݖ݊݅ݏ 

and the Hankel transforms ℋିభమ
 ݂ and ℋభ

మ
 ݂ are the cosine and sine transforms: 

ℋିଵଶ
(ݕ)݂  =  ඨ

2
ߨ  න݂(ݐ) ܿݐ݀ ݐݕݏ݋ ,   ℋଵ

ଶ
(ݕ) ݂  =  ඨ

2
ݐ݀ ݐ ݕ݊݅ݏ (ݐ)න݂  ߨ

∞

଴

∞

଴

 . 

It is known that for (ߙ − (ߚ ≥ − ଵ
ଶ

 , ℋఈ,ఉ is an isometry on ܮଶ(0,∞) (Parseval’s theorem) for the Hankel type transform ) and 
ℋఈ,ఉ  .ℋఈ,ఉ =   and ,(The inversion formula for the Hankel type transform) ܫ

න݂(ݔ) ݃(ݔ) ݀ݔ =  නℋఈ,ఉ ℋఈ,ఉ (ݔ) ݂  ݔ݀ (ݔ)݃ 
∞

଴

∞

଴

 

for ݂,݃ ∈  ଶ (0,∞) is theܮ ଶ (0,∞) (Plancherel’s theorem for the Hankel type tranform), where I is the identity operator andܮ 
Lebesgue space of functions on (0,∞) such that 

‖݂‖ଶ =  ቌන|݂(ݔ)|ଶ ݀ݔ
∞

଴

ቍ

ଵ
ଶ

 < ∞ . 

We shall consider the composite  

ఈܶ,ఉ
௔,௕ =  ℋఈ,ఉ  .ℋ௔,௕  , 

which is an isometry on ܮଶ (0,∞) for (ߙ − (ߚ ≥ − ଵ
ଶ

 , (ܽ − ܾ)  ≥  − ଵ
ଶ
 . For ݂ ∈ ∋ ݂ with ℋ௔,௕ (∞,0) ′ܮ  ,(∞,0) ′ܮ  ఈܶ,ఉ

௔,௕ ݂ has 
the integral representation     

ఈܶ,ఉ
௔,௕ ݂(ݔ) =  නන݂(ݐ) (ݐݕ)ఈା௕ ܬ௔ି௕ (ݐݕ) ݀ݐ

∞

଴

ఈିఉ(ݕݔ) 
∞

଴

ఈିఉܬ  ,ݕ݀ (ݕݔ)  ݔ > 0. 

We call ఈܶ,ఉ
௔,௕ the transplantation operator from ܽ − ߙ ݋ݐ ܾ −  The aim of this paper is to prove that the transplantation operators  . ߚ

ఈܶ ,ఉ
௔,௕ are bounded on the real Hardy space. 

As an application, we shall obtain the Hormander-Mihlin type multiplier theorem for the Hankel type transform on the real Hardy 
space. 

The main tools of our proofs are the atomic decomposition and the molecular characterization of the real Hardy space, and 
Schindler’s integral representation [13] of ఈܶ,ఉ

௔,௕ . We recall the representation here. Let ఈܶ,ఉ,௔,௕ be an operator defined by 
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ఈܶ,ఉ,௔,௕ ݂(ݔ) =  limఋ→଴ା ∫ ݕ݀ (ݕ,ݔ) ሚఈ,ఉ,௔,௕ܫ (ݕ)݂ + ,ߚ,ߙ)݇ ܽ, ௫ି௬|வఋ|, (ݔ)݂ (ܾ                              (1.1) 

,ߚ,ߙ) ݇ ܽ, ܾ) = ߙ)ቆ ݏ݋ܥ − ߚ − ܽ + ܾ)
ߨ
2
ቇ  , 

where 

(ݕ,ݔ) ሚఈ,ఉ,௔,௕ܫ = (ݕݔ) ఈ,ఉ,௔,௕ܭ 
భ
మ ቀ௬

௫
ቁ
௔ି௕ ଵ

௫మି௬మ
ቀ௔ି௕ିఈାఉ ܨ 

ଶ
 , ఈିఉା௔ି௕

ଶ
 ; 3ܽ + ܾ ;  ௬

మ

௫మ
ቁ ,                                    (1.2) 

                         =  
1
ఈ,ఉ,௔,௕ܭ 2  ቀ

ݕ
ݔ
ቁ
ଶ௔

 ൬
1

ݔ − ݕ +
1

ݔ + ݕ
൰ 

                        × ቆ ܨ
ܽ − ܾ − ߙ + ߚ

2 ,
ߙ − ߚ + ܽ − ܾ

2  ; 3ܽ + ܾ ;  
ଶݕ

ଶݔ
ቇ , 

ఈ,ఉ,௔,௕ܭ          =  
2 Γ(α− β + a− b + 2)/2)

Γ(3ܽ + ܾ) Γ ൫(ߙ − ߚ − ܽ + ܾ)/2൯
  , 0   ݎ݋݂ < ݕ <  , ݔ

and  

,ݔ)  ሚఈ,ఉ,௔,௕ܫ (ݕ = , (ݔ,ݕ)  ሚఈ,ఉ,௔,௕ܫ  ݕ  ݎ݋݂ > ݔ > 0. 

Here 

;′ݍ,′݌) ܨ ݎ ′; (ݖ =  ෍
௞(′ݍ)௞(′݌)  

ݎ) ′)௞  ݇!

∞

௞ୀ଴

௞ݖ    , |ݖ| < 1 , 

where  (ߣ)଴ = 1, ௞(ߣ) = ߣ)ߣ  + 1) … . . ߣ) + ݇ − 1)  , ݇ ≥ 1. If ߙ − ߚ = ܽ − ܾ + 2݇ and ݇ = 0,1,2 … ., then ܫሚఈ,ఉ,௔,௕  (ݕ,ݔ) = 0 
for (ݕ > ݔ > 0).  If ݇ = 0,−1,−2, … … ., then ܫሚఈ,ఉ,௔,௕  (ݕ,ݔ) = 0 for ݔ > ݕ > 0. In these cases, ܫሚఈ,ఉ,௔,௕  (ݔ,  have more (ݕ
elementary forms (See [13]). 

Schindler proved that if (ߙ − ,(ߚ (ܽ − ܾ) ≥  − ଵ
ଶ
, then the following (A) and (B) hold: 

A. For ݂ ∈ , ௖∞(0,∞)ܥ  ఈܶ,ఉ
௔,௕ ݂(ݔ) =  ఈܶ,ఉ,௔,௕ ݂(ݔ) ܽ. ݁.   , ݔ > 0 ,  where ܥ௖(0,∞) is the space of   infinitely differentiable 

functions of compact support in (0,∞) ; 
B. Let |< ݌ < ∞ and − ଵ

௣
 < ܽ < 1− ଵ

௣
 . If∫ ௣′௣ݔ ௣|(ݔ)݂| > ݔ݀  ∞,∞

଴  then the value ఈܶ,ఉ,௔,௕ ݂(ݔ) exists for a.e. ݔ > 0 and 

නห ఈܶ,ఉ,௔,௕ ݂(ݔ)ห௣ ݔ௣′௣ ݀ݔ ≤  ݔ௣′௣݀ݔ ௣|(ݔ)݂|න ܥ
∞

଴

.
∞

଴

 

with ܽ  constant ܥ  independent of ݂. Guy [6] proved that the operators ఈܶ,ఉ
௔,௕  initially defined on ܮଶ(0,∞),  are extendable to 

bounded operators on the ܮ௣ − spaces, 1 < ݌ < ∞, and this is the first of the transplantation theorem for classical expansions. 
Schindler [13] showed a refined version of Guy’s result by getting the explicit formula of ఈܶ,ఉ

௔,௕  as we recalled above. 

To consider the transplantation operators ఈܶ,ఉ
௔,௕ for the case ݌ = 1 is our problem, and the main result of this paper is that the 

operator ఈܶ ,ఉ
௔,௕ are bounded on the real Hardy space which gives us the Hormander-Mihlin type multiplier theorem for the Hankel 

type transform on the real Hardy space.  There are transplantation theorems for other orthogonal expansions. Askey and 
Woinger [2] gave a transplantation theorem for the ultra spherical series, and Askey [1] generalized their theorem to the Jacobi 
series. Some transplantation theorems are in Gilbert [5] and in Muckenhoupt [12]. The Laguerre series case is in Kanjin [7]. 
Miyachi [10] and [11] quite recently obtained a transplantation theorem for the Jacobi series in weighted Hardy spaces. 
 
2. Results 
Let ܪ′(ℝ) be the real Hardy space that is the space of the boundary functions  ݂(ݔ) =  ℛ (ݔ)ܨ of the real part ℛ (ݖ)ܨ of 
functions (ݖ)ܨ in the Hardy space ܪ′(ℝା

ଶ ) = analytic in ℝା ;(ݖ)ܨ}
ଶ  and ‖ܨ‖ு′൫ℝశమ ൯ = ௧வ଴݌ݑܵ  ∫ ݔ)ܨ| + ݔ݀ |(ݐ݅ < ∞}∞

ିஶ  on the 
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upper half plane ℝା
ଶ = ݖ} = ݔ + ; ݐ݅ ݐ  > 0}, with the norm ‖݂‖ு ′(ℝ) = ு′൫ℝశమ‖ܨ‖  ൯.We shall work on the space (∞,0)′ܪ defined 

by  
(∞,0)′ܪ =  ൛ℎ |(଴,∞) ;ℎ ∈ ,(ℝ)′ܪ  ⊃ ℎ݌݌ݑܵ [0,∞) ൟ . 

where [0,∞) is the closed half line and we endow the space with the norm  
‖݂‖ு ′(଴,∞) =  ‖ℎ‖ு ′(ℝ) , ∋ ℎ  ݁ݎℎ݁ݓ  , (ℝ)′ܪ

⊃ ℎ݌݌ݑܵ  [0,∞) ܽ݊݀ ݂ = ℎ |(଴,∞) .   
We remark that  

(∞,0)′ܪ =  ൛ℎ |(଴,∞) ;  ℎ ∈  ൟ݊݁ݒ݁   ,(ℝ)′ܪ
and ܿଵ ‖ℎ‖ு ′(ℝ)  ≤  ‖݂‖ு ′(଴,∞)  ≤   ܿଶ ‖ℎ‖ு ′(ℝ) with positive constants ܿଵ ܽ݊݀ ܿଶ , ݂ ݁ݎℎ݁ݓ = ℎ |(଴,∞) ܽ݊݀ ℎ ߳ ܪ′(ℝ)  is even. 
This fact is in [4, chapter III, Lemma 7.40]. 
Our main theorem is as follows: 
Theorem  
(i) Let (ߙ − (ߚ ≥ − ଵ

ଶ
 ܽ݊݀ (ܽ − ܾ) > − ଵ

ଶ
 . Then ఈܶ ,ఉ

௔,௕, initially defined on (∞,0)′ܪ ∩  ଶ(0,∞),  is uniquely extended to aܮ 

bounded operator on  (∞,0)′ܪ and if we still denote it by ఈܶ,ఉ
௔,௕ ,  then 

ฮ ఈܶ,ఉ
௔,௕݂ฮ

ு ′(଴,∞)
 ≤ ு‖݂‖ ܥ ′(଴,∞) , ∋ ݂ ݎ݋݂  (∞,0)′ܪ 

with a constant C depending only on ߙ − ܽ and ߚ − ܾ. 

(ii) If (ߙ − (ߚ ≥ − ଵ
ଶ
 , then ఈܶ,ఉ

ିభమ  is uniquely extended to a bounded operator from (∞,0)′ܮ ݋ݐ (∞,0)′ܪ, that is  

ብ ఈܶ,ఉ
ିଵଶ݂ብ

௅′(଴,∞)
 ≤ ு‖݂‖ ܥ ′(଴,∞) , ∋ ݂  ݎ݋݂    (∞,0)′ܪ 

with ܽ constant C depending only on ߙ − ܽ and ߚ − ܾ. 
As an application of our theorem we deal with the Hormander-Mihlin type multiplier theorem for the Hankel type transform. Let 
ߙ) − (ߚ ≥ − ଵ

ଶ
 and Φ ∈ We define a Hankel multiplier operator ℳம .(∞,0) ∞ܮ

ఈ,ఉ with multiplier ߶ by  

ℳథ
ఈ,ఉ݂ =  ℋఈ,ఉ  ቀ߶ ℋఈ,ఉ  (݂)ቁ  , ∋ ݂ ݎ݋݂  . ଶ(0,∞)ܮ 

Since ℋఈ,ఉ is an isometry on ܮଶ(0,∞), the multiplier operator ℳథ
ఈ,ఉ is a bounded operator on ܮଶ(0,∞) with the operator norm 

‖߶‖∞. We also define a Fourier multiplier operator ℳ௠ with multiplier ݉ ∈  by (ℝ) ∞ܮ
ℳ௠ℎ =  ℱିଵ൫݉ ℱ(ℎ)൯ , ∋ ℎ  ݎ݋݂  ℱ ܽ݊݀ ℱିଵ  ݁ݎℎ݁ݓ   ,ଶ (ℝ)ܮ

are the Fourier transform and the inverse Fourier transform, respectively: 

ℱ(ℎ)(ߦ) =  
1
ߨ2√

 න ℎ(ݔ) ݁ି௜௫క (ݔ)(݃)ℱିଵ   , ݔ݀  =  
1
ߨ2√

 න ௜௫క݁ (ߦ)݃ ߦ݀ 
ℝℝ

 

The Hormander-Mihlin multiplier theorem for ܪ′(ℝ) says that, if ݉ with ‖݉‖௅∞(ℝ)  ≤  satisfies the condition ܣ

                                ൬ଵ
ோ

 ∫ ቚௗ௠(క)
ௗక

ቚ
ଶ

ோ ழ|క|ழଶோߦ݀  ൰
భ
మ
≤ ܴ ݎ݋݂   ଵିܴ ܣ >  (2.1)                                           ݁ݎℎ݁ݓ        ,0

∩(ℝ)′ܪ is independent of R, then the Fourier multiplier operator ℳ௠ initially defined on ܣ  ଶ (ℝ) is uniquely extended to aܮ 
bounded operator on ܪ′(ℝ). If we still denote it byℳ௠, then ‖ℳ௠ℎ‖ு ′(ℝ) ≤ ℎ‖ு‖ ܣ ܥ ′(ℝ)  ݂ݎ݋  ℎ ∈  with C independent  (ℝ)′ܪ
of ℎ and ݉ (see [4, Chapter III, Theorem 7.30]). We may refer to [14, Chapter IV, §3, §6] and [4, Chapter II, Theorem 6.3] for 
the ܮ௣ − space case. 
 
Corollary  
 Let (ߙ − (ߚ  ≥  − ଵ

ଶ
 . Suppose that ߶ with ‖߶‖௅∞(଴,∞)  ≤  satisfies the condition ܣ

൬ଵ
ோ

 ∫ ቚௗథ(௬)
ௗ௬

ቚ
ଶ

ோ ழ|௬|ழଶோݕ݀  ൰
భ
మ
≤  ଵ                                                                     (2.2)ିܴ ܣ

for ܴ > 0, where A is independent of R. Then the Hankel multiplier operator ℳథ
ఈ,ఉ initially defined on ܪଵ(0,∞)  ∩  ଶ(0,∞) isܮ 

uniquely extended to a bounded operator from ܪଵ(0,∞) ܮ ݋ݐଵ(0,∞). If we also denote it by ℳథ
ఈ,ఉ then 

ቛܯథ
ఈ,ఉ݂ቛ

௅భ(଴,ஶ)
 ≤ ,  ுᇲ(଴,ஶ)‖݂‖ ܣ ܥ ∋ ݂  ݎ݋݂   ܥ ℎݐ݅ݓ ଵ(0,∞)ܪ

independent of ݂ ܽ݊݀ ߶ . 
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The corollary is deduced from the theorem as follows: Let ߶ ߳ ܮஶ(0,∞) satisfy the condition (2.2) and let ݂ ߳ ܪଵ(0,∞)  ∩
 .௖ஶ(0,∞)ܥ 
We extend ߶ ܽ݊݀ ݂  to the functions on ℝ, as even functions and we denote them by ߶௘  ܽ݊݀ ௘݂  . Since the function ߶௘ satisfies 
the condition (2.1), the Fourier multiplier operator ℳథ೐ is a bounded operator on ܪଵ(ℝ). Since ିܪభమ

(ݕ)݂  =  ℱ ௘݂ ,(ݕ)  ݕ > 0,  

we see that ℳథ೐  ௘݂ (ݔ)  =  ℳథ
ିభమ ݂(ݔ), ݔ > 0. Further ℳథ೐ ௘݂ is an even function. Thus ℳథ

ିభమ has a unique bounded extension on 

ଵ(0,∞). The inequality ‖݃‖௅భ(଴,ஶ)ܪ  ≤  ‖݃‖ுభ(଴,ஶ) holds, and so ℳథ
ିభమ is uniquely extended to a bounded operator from 

ߙ) ଵ(0,∞).  Letܮ ଵ(0,∞) toܪ − (ߚ >  − ଵ
ଶ
 . It follows from the theorem that ܶି భ

మ

ఈ,ఉ is a bounded operator on ܪଵ(0,∞) and ఈܶ,ఉ
ିభమ  is 

a bounded operator from ܪଵ(0,∞) to ܮଵ(0,∞). Therefore, the identity ℳథ
ఈ,ఉ =  ఈܶ,ఉ

ିభమ  ℳథ
ିభమ ܶି భ

మ

ఈ,ఉ  on ܮଶ(0,∞) implies the 

corollary.  
Remark : Let ߙ − ߚ > − ଵ

ଶ
 . Assume that ℳథ

ఈ,ఉ is a bounded operator on ܪଵ(0,∞). Then ߶ = 0 if we assume additionally that 

߶ satisfies ߶ = భమିܪ 
 Φ for some Φ ∈ ଵ(0,∞). For, we first note that ℳథܮ 

భ
మ is a bounded operator on ܪଵ(0,∞) by the identity 

ℳథ

భ
మ =  భܶ

మ

ఈ,ఉ  ℳథ
ఈ,ఉ

ఈܶ,ఉ

భ
మ   and the theorem. Let ݂ ∈ ∩ ଵ(0,∞)ܪ ௖ஶ (0,∞). Since ℳథܥ 

భ
మ  ݂ ∈ ଵ(0,∞) ,ℳథܪ

భ
మ  ݂ has the vanishing 

mean property: 

නℳథ

ଵ
ଶ ݂(ݔ) ݀ݔ = 0.

ஶ

଴

 

We extend ߶ and Φ to the even functions on ℝ, and denote them by ߶௘ and  Φ௘ . We note that ߶௘ = ℱ Φ௘  . Further, we extend ݂ 

to the odd function on ℝ, which is denoted by ௢݂ . Since – ݅ ℋభ
మ
(ݕ)݂  =  ℱ ௢݂(ݕ), ݕ > 0, we see that ℳథ

భ
మ݂(ݔ) =  ℳథ௘  ௢݂(ݔ),

ݔ > 0. The identity  ℳథ௘  ௢݂ =  Φ௘ ∗  ௢݂ holds. Therefore, we have  

0 =  න න Φ௘(ݕ) ௢݂(ݔ − ݔ݀ ݕ݀ (ݕ
ஶ

ିஶ

ஶ

଴

 

          =  න Φ௘(ݕ) න ௢݂ ݔ)  − ݕ݀ ݔ݀ (ݕ
ஶ

଴

ஶ

ିஶ

 

                                                =  න Φ௘ න (ݕ)  ௢݂  
ஶ

–௬

ஶ

଴

ݕ݀ ݑ݀ (ݑ) +  නΦ௘(ݕ) න ௢݂  ݕ݀ ݑ݀ 
ஶ

–௬

଴

ିஶ

 

                                                       =  −2 න Φ(ݕ) න݂(ݑ) ݀ݕ݀ݑ =  −2 න න (ݑ)݂ Φ(ݕ) ݀ݑ݀ ݕ,
ஶ

௨

ஶ

଴

௬

଴

ஶ

଴

 

that is ∫ ݑ݀ ݕ݀ (ݕ)Φ (ݑ) ݂ = 0ஶ
଴  for all ݂ ∈ ∫ ௖ஶ(0,∞),  which implies thatܥ⋂ ଵ(0,∞)ܪ Φ(ݕ) ݀ݕ ஶ

௨  is a constant function in ݑ , 
and so Φ(ݕ) = 0 for ܽ. ݁. ݕ > 0. We conclude ߶ = 0. 
 We conjecture that without the additional condition the above statement holds, that is if ℳథ

ఈ,ఉwith ߶ ∈  ஶ(0,∞) isܮ

bounded operator on ܪଵ(0,∞), then ߶ is constant, where (ߙ − (ߚ > − ଵ
ଶ
 . 

 The theorem will be proved in the next section. The atomic decomposition and the molecular characterization of the real 
Hardy space will play important role in our proof. A real valued function ܽ is called an atom centered at ܿ if  
(i) ܽ(ݔ) is supported in an interval [ܿ − ௛

ଶ
, ܿ + ௛

ଶ
]  

(ii) ‖ܽ‖ଶ  ≤  ℎି
భ
మ  , ܽ݊݀  (iii) ∫ ݔ݀(ݔ)ܽ = 0 .ℝ  The space ܪଵ(ℝ) is characterized in terms of atoms: ݂ ߳ ܪଵ(ℝ) if and only if 

݂ =  ෍ߣ௝  ௝ܽ  ,
ஶ

௝ୀ଴

 

where each ௝ܽ  is an atom and 
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෍หߣ௝ห < ∞
ஶ

௝ୀ଴

. 

Further, the ܪଵ −   ுభ(ℝ) is equivalent to‖݂‖  ݉ݎ݋݊

݂݅݊෍หߣ௝ห ,
ஶ

௝ୀ଴

  

the infimum being taken over all decompositions, and the series 

෍ߣ௝  ௝ܽ

ஶ

௝ୀ଴

 

converges in ܪଵ −  .݉ݎ݋݊
 We deal with the functions݂ ∈  ଵ(0,∞). These functions are also characterized as follows (See [4, chapter III, Lemmaܪ
7.40]) : ݂ ∈  ଵ(0,∞) if and only ifܪ

݂ =  ෍ߣ௝  ௝ܽ  ,
ஶ

௝ୀ଴

  

where each ௝ܽ  is an atom with ܵ݌݌ݑ ௝ܽ  ⊂ [0,∞) and 

෍หߣ௝ห < ∞.
ஶ

௝ୀ଴

 

Moreover, the norm ‖݂‖௅భ(଴,ஶ) is equivalent to  

݂݅݊෍หߣ௝ห ,
ஶ

௝ୀ଴

 

the infimum being taken over all such decompositions. By this decomposition we see that ܮଵ(0,∞) ∩  ଶ (0,∞) is dense inܮ 
 .ଵ(0,∞)ܪ
 We call a real-valued function M a molecule centered at c if M satisfies the following conditions: 

(i) ܰ (ܯ) = ௅మ(ℝ)ܯ 

భ
మ  | ∙ ௅మ(ℝ)ܯ |ܿ− 

భ
మ <  ∞ ; 

(ii)∫ ݔ݀ (ݔ) ܯ = 0.ℝ  
We recall ܰ(ܯ) the molecular norm of M(ݔ). The molecular characterization asserts that if           ݂ =  Σ௝ܯ௝ with molecules ܯ௝  
and Σ௝ ܰ൫ܯ௝൯ < ∞, then ݂ ∈ ଵ (ℝ) and ‖݂‖ுభ(ℝ)ܪ  ≤ Σ௝ ܥ ܰ൫ܯ௝൯ with an absolute constant C. For the atomic decomposition 
and the molecular characterization, we may refer to [4,  .[ܫܫܫ
 
3. Proofs: The theorem will be proved by the following two lemmas: 
Lemma 3.1: If (ܽ − ܾ) > − ଵ

ଶ
,  then ௔ܶ,௕

ହ௔,ଷఉand ହܶ௔,ଷ௕
௔,௕  are uniquely extended to bounded operators on ܪଵ(0,∞), that is  

ฮ ௔ܶ,௕
ହ௔,ଷ௕݂ฮ

ுభ(଴,ஶ)
 ≤  ,  ுభ(଴,ஶ)‖݂‖ ܥ 

ฮ ହܶ௔,ଷ௕
௔,௕ ݂ฮ

ுభ(଴,ஶ)
 ≤      ுభ(଴,ஶ)‖݂‖ ܥ

for ݂ ∈ ܽ ଵ(0,∞) with ܽ constant C depending only onܪ − ܾ. 
Lemma 3.2: (i) If (ܽ − ܾ) > − ଵ

ଶ
 and (ܽ − ܾ) > − ଵ

ଶ
, then ఈܶ,ఉ

௔,௕ is uniquely extended to a bounded operator on ܮଵ(0,∞), that is  

ฮ ఈܶ,ఉ
௔,௕݂ฮ

ுభ(଴,ஶ)
 ≤ , ுభ(଴,ஶ)‖݂‖ ܥ ݂ ∈   ଵ(0,∞)ܪ

with ܽ constant ܿ depending only on ߙ − ܽ and ߚ − ܾ. 

(ii) If (ߙ − (ߚ ≥ − ଵ
ଶ
 , then ఈܶ,ఉ

ିభమ  is uniquely extended to a bounded operator from ܪଵ(0,∞) to ܮଵ(0,∞), that is  

ብ ఈܶ,ఉ
ିభమብ

௅భ(଴,ஶ)
 ≤ ,  ுభ(଴,ஶ)‖݂‖ ܥ ݂  ݎ݋݂ ∈ ߙ ଵ(0,∞) with ܽ constant ܿ depending only onܪ −  .ߚ

 We see here that the theorem is deduced from these lemmas. We first note that the identity ఈܶ,ఉ
ఛ  ఛܶ

௔,௕ =  ఈܶ ,ఉ
௔,௕ on ܮଶ(0,∞) 

holds, since 

ఈܶ,ఉ
ఛ  ఛܶ

௔,௕ =  ℋఈ,ఉ  ℋఛ  ℋఛ ℋ௔,௕ =  ℋఈ,ఉ  ℋ௔,௕ =  ఈܶ,ఉ
௔,௕ .  
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Let us prove the part (i) of the theorem. Let (ߙ − (ߚ ≥ − ଵ
ଶ
 and (ߙ − (ߚ > − ଵ

ଶ
.  It follows from Lemma 3.1 that ହܶ௔,ଷ௕

௔,௕ , initially 

defined on ܪଵ(0,∞)  ∩ ଵ(0,∞). Since 5ܽܪ ଶ(0,∞)  is uniquely extended to a bounded operator onܮ + 3ܾ ≥  ଵ
ଶ
 ,  it follows from 

the part (i) of Lemma 3.2 that the operator  ௔ܶ,௕
ହ௔,ଷ௕is uniquely extended to a bounded operator on ܪଵ(0,∞). Because of the fact  

ఈܶ,ఉ
௔,௕ =  ఈܶ ,ఉ

ହ௔,ଷ௕ ହܶ௔,ଷ௕
௔,௕   

on ܪଵ(0,∞) ∩ ଶ(0,∞), we see that  ఈܶ,ఉܮ
௔,௕  has a unique bounded extension on ܪଵ(0,∞). The part (ii) of the theorem is the part 

(ii) of Lemma 3.2 itself. 
 Now we turn to the proof of Lemma 3.1 : 
Let (ߙ − (ߚ > − ଵ

ଶ
, and put 

ܷ(௔ି௕)݂(ݔ) =  න ቀ
ݔ
ݐ
ቁ
ଶ௔

 (ݐ)݂ 
ݐ݀
ݐ

ஶ

௫

  , ܵ(௔ି௕)݂(ݔ) =  
1
ݔ  නቀ

ݔ
ݐ
ቁ
ଶ௔

ݐ݀ (ݐ)݂ 
௫

଴

 

for ݔ > 0. Then we see that 

௔ܶ,௕
ହ௔,ଷ௕݂ = 2(3ܽ + ܾ) ܷ(௔ି௕)݂ − ݂ , ହܶ௔,ଷ௕

௔,௕ ݂ = 2(3ܽ + ܾ) ܵ(௔ି௕)݂ − ݂ 
for ݂ ߳ ܮଶ(0,∞) by [13, p 383, line 5 from below and p.381, line 8 from below]. In [8, Proposition], we proved that 
ܷ(௔ି௕)  ܽ݊݀ ܵ(௔ି௕) are extended to bounded operators on ܪଵ(0,∞) for (ߙ − (ߚ > − ଵ

ଶ
 and thus, ௔ܶ,௕

ହ௔,ଷ௕ܽ݊݀  ହܶ௔,ଷ௕
௔,௕  have the same 

boundedness, which is Lemma 3.1. 
 Lemma 3.2 will be reduced to the following Lemma 3.3 and Lemma 3.4. 
Lemma 3.3 
 Assume that (ߙ − ,ߚ ܽ − ܾ) satisfies (ߙ − (ߚ ≥ − ଵ

ଶ
 , ߙ) − (ߚ ≥  ଵ

ଶ
  or (ߙ − (ߚ ≥ − ଵ

ଶ
 , ܽ − ܾ =  − ଵ

ଶ
.  Let be an atom centered 

at ܿ with Suppd ⊂  [0,∞),  and we regard ఈܶ ,ఉ
௔,௕ ݀ as ఈܶ ,ఉ

௔,௕ ݀(ݔ) = ݔ ݎ݋݂  0 ≤ 0.  Then, there exists a constant ܥ depending only on 
ߙ − ܽ and ߚ − ܾ such that 

                                           ܰ ൫ ఈܶ,ఉ
௔,௕ ݀൯ =  ฮ ఈܶ,ఉ

௔,௕ ݀ฮ
ଶ

భ
మ   ฮ|∙  −ܿ| ఈܶ ,ఉ

௔,௕ ݀ฮ
ଶ

భ
మ  ≤   (3.1)                                                    ܥ

Lemma 3.4 
 Let (ߙ − (ߚ ≥ − ଵ

ଶ
 ܽ݊݀ (ܽ − ܾ) ≥ ଵ

ଶ
 . Then, ∫ ఈܶ,ఉ

௔,௕ ݀(ݔ) ݀ݔ = 0ஶ
଴  for every atom d with Suppd C [0,∞). 

We show first that Lemma 3.2 is obtained by Lemma 3.3 and Lemma 3.4. Let ݂ ∈ ∩ ଵ(0,∞)ܪ    .ଶ(0,∞)ܮ
Let 

݂ =  ෍ߣ௝  ௝ܽ

ஶ

௝ୀ଴

 

be an atomic decomposition of ݂ such that 

෍หߣ௝ห  ≤ ,  ுᇲ(଴,ஶ)‖݂‖ ܥ
ஶ

௝ୀ଴

 

where C is independent of ݂. To prove Lemma 3.2, we shall first show that 

ఈܶ,ఉ
௔,௕ ݂ (ݔ) =  ∑ ௝ߣ  ஶ

௝ୀ଴ ఈܶ,ఉ
௔,௕ ௝ܽ .ܽ  (ݔ)  ݔ  .݁ > 0  ,                                                                                             (3.2)   

for (ߙ − (ߚ ≥ − ଵ
ଶ

, ߙ) − (ߚ ≥ ଵ
ଶ
 or ߙ − ≤ ߚ  − ଵ

ଶ
 , ܽ − ܾ =  − ଵ

ଶ
 .  Let ݃ ∈  ௖ஶ(0,∞).  Then we haveܥ

න ఈܶ,ఉ
௔,௕ ݂(ݔ) ݃ (ݔ) ݀ݔ

ஶ

଴

=  නℋఈ,ఉ  ℋ௔,௕ ݂(ݔ) ݃(ݔ) ݀ݔ.
ஶ

଴

 

                                        =  න  (ݔ)݂
ஶ

଴

ℋ௔,௕ ℋఈ,ఉ  .ݔ݀ (ݔ)݃ 

by Planchevel’s theorem and the inversion formula. The inequality  
หℋ௔,௕ ℋఈ,ఉ ห(ݔ)݃   ≤ ฮℋఈ,ఉ݃ฮ௅భ(଴,ஶ) ܥ

 holds, and ฮℋఈ,ఉ݃ฮ௅భ(଴,ஶ)
< ∞ . 

Since ݃ ∈ ௖ஶ(0,∞). For every atom ௝ܽܥ  , we have ฮ ௝ܽฮ௅భ(଴,ஶ)
 ≤ 1. 

Thus we have 

න  (ݔ)݂
ஶ

଴

ℋ௔,௕ ℋఈ,ఉ = ݔ݀ (ݔ) ݃   න෍ߣ௝  ௝ܽ  (ݔ) 
ஶ

௝ୀ଴

ஶ

଴

ℋ௔,௕ ℋఈ,ఉ  ݔ݀ (ݔ)݃ 
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                                                      =  ෍ߣ௝  න ௝ܽ  (ݔ) 
ஶ

଴

ஶ

௝ୀ଴

ℋ௔,௕  ℋఈ,ఉ  ݔ݀ (ݔ)݃ 

                                                       =  ෍ߣ௝  න  ℋఈ,ఉ  
ஶ

଴

ஶ

௝ୀ଴

ℋ௔,௕ ௝ܽ  .ݔ݀ (ݔ) ݃ (ݔ) 

We remark that the inequality ‖Ψ‖௅భ(଴,ஶ)  ≤  2
య
మ ܰ (Ψ) holds. (݂ܿ. [4,  It follows from Lemma 3.3 .([7.11 ܽ݉݉݁ܮ,ܫܫܫ ݎ݁ݐ݌ℎܽܥ

that  
ฮ ℋఈ,ఉℋ௔,௕ ௝ܽ  ฮ

௅భ(଴,ஶ)
=  ฮ ఈܶ,ఉ

௔,௕ ௝ܽฮ௅భ(଴,ஶ)
 ≤ ൫ ܰ ܥ ఈܶ,ఉ

௔,௕ ௝ܽ൯  ≤  .ܥ

Here and below, C denotes a positive constant which may differ at each different occurrence. Thus, the last sum is equal to  

න෍ߣ௝  
ஶ

௝ୀ଴

ஶ

଴

 ℋఈ,ఉ  ℋ௔,௕ ௝ܽ  ,ݔ݀ (ݔ) ݃(ݔ) 

which leads to  

න ఈܶ ,ఉ
௔,௕ ݂(ݔ) ݃(ݔ) ݀ݔ

ஶ

଴

=  න෍ߣ௝  
ஶ

௝ୀ଴
ఈܶ,ఉ
௔,௕ ௝ܽ  ݔ݀ (ݔ)݃ (ݔ) 

ஶ

଴

 

for all ݃ ∈  .௖ஶ(0,∞), and we get (3.2)ܥ
           Because of (3.2), we have 

ฮ ఈܶ ,ఉ
௔,௕ ݂ฮ

ுభ(଴,ஶ)
 ≤  ௝൯ߣ෍ܰ ൫ ܥ

ஶ

௝ୀ଴
ఈܶ,ఉ
௔,௕ ௝ܽ)  ≤ ௝ห ܰ ൫ߣ෍ห ܥ ఈܶ,ఉ

௔,௕ ௝ܽ൯
ஶ

௝ୀ଴

 

                                                              ≤ ௝หߣ෍ห ܥ  ≤ ுభ(଴,ஶ)‖݂‖ ܥ

ஶ

௝ୀ଴

  

for (ߙ − (ߚ ≥  − ଵ
ଶ

 , (ܽ − ܾ)  ≥  ଵ
ଶ
 by Lemma 3.3, Lemma 3.4 and the molecular characterization. If (ߙ − (ߚ ≥  − ଵ

ଶ
 , ܽ − ܾ =

 − ଵ
ଶ

 ,  ℎ݁݊ݐ

ฮ ఈܶ,ఉ
௔,௕ ݂ฮ

௅భ(଴,ஶ)
 ≤  ෍หߣ௝ห 

ஶ

௝ୀ଴

ฮ ఈܶ,ఉ
௔,௕ ௝ܽฮ௅భ(଴,ஶ)

≤  ௝หߣ෍ห ܥ
ஶ

௝ୀ଴

ܰ ൫ ఈܶ ,ఉ
௔,௕ ௝ܽ൯ 

                                                            ≤  ෍หߣ௝ห  ≤ . ுభ(଴,ஶ)‖݂‖ ܥ
ஶ

௝ୀ଴

 

These inequalities allow us to use the standard density argument, and we obtain Lemma 3.2. 
We now come to the proofs of Lemma 3.3 and Lemma 3.4 
 
Proof of Lemma 3.3 
 Let ܽᇱ be an atom centred at a with Suppa ⊂ [0,∞). Let ࣫ = ቂܿ − ℎ 2,   ܿ + ⁄ ℎ

2ൗ ቃ  ⊂  [0,∞) be the smallest interval containing 

Suppܽᇱ .  Since ఈܶ ,ఉ
௔,௕ is an isometry on ܮଶ(0,∞),  it follows that 

                                                             ฮ ఈܶ,ఉ
௔,௕ ܽᇱฮ

ଶ
=  ‖ܽᇱ‖ଶ  ≤  ℎି

భ
మ                                                                     (3.3) 

To prove (3.1), it is enough to show that 

ฮ|∙  −ܿ| ఈܶ,ఉ
௔,௕ ܽᇱฮ

ଶ
 ≤ ℎ ܥ

ଵ
ଶ . 

We put തܳ =  [ܿ − ℎ, ܿ + ℎ]. we write 

     ฮ|∙  −ܿ| ఈܶ,ఉ
௔,௕ ܽᇱฮ

ଶ

ଶ
=   ቐ න + න

(଴,ஶ)ିொത(଴,ஶ ∩ ொത )

ቑ ݔ| − ܿ|ଶ ห ఈܶ,ఉ
௔,௕ ܽᇱ(ݔ)ห

ଶ
 ݔ݀

                                                                =  ଵܸ +  ଶܸ (ݕܽݏ).  
For ଵܸ, we have by (3.3), 

ଵܸ  ≤  ℎଶ ฮ ఈܶ,ఉ
௔,௕ ܽᇱฮ

ଶ

ଶ
 ≤ ℎ . 
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An essential part of the proof is to show ଶܸ  ≤ ܿ ℎ . By Schindler’s result (A) and (B), we see that ఈܶ ,ఉ
௔,௕ =  ఈܶ,ఉ,௔,௕ on ܮଶ(0,∞). 

Thus Schinder’s integral representation (1.1) leads us to 

ఈܶ,ఉ
௔,௕ ܽᇱ(ݔ) =  lim

ఋ→଴ା
න ܽᇱ(ݕ) ܫሚ (ݔ, ݕ݀ (ݕ + ߙ)݇ − ,ߚ ܽ − ܾ) ܽᇱ (ݔ) ܽ. ݔ  .݁ > 0 ,

|௫ି௬|வఋ

 

where we put 
(ݕ,ݔ) ሚܫ =  Iሚఈ,ఉ,௔,௕(ݔ, ∋ ݔ for simplicity. For  (ݕ  (0,∞)−  തܳ , we have 

ఈܶ ,ఉ
௔,௕ ܽ(ݔ) =  න ܽᇱ(ݕ) ܫሚ (ݔ, ,ݕ݀ (ݕ

ொ

 

and thus, 

ଶܸ =  න ݔ| − ܿ|ଶ  ቮන ܽᇱ(ݕ) ܫሚ (ݔ, ݕ݀ (ݕ
ொ

ቮ

ଶ

. ݔ݀ 
(଴,ஶ)ିொത

 

The Taylor expansion of ܫሚ (ݕ,ݔ) in ݕ at ܿ and the cancellation property of atoms imply 

න ܽᇱ(ݕ) ܫሚ
ொ

,ݔ)  ݕ݀ (ݕ =  න ܽᇱ(ݕ) 
ሚܫ߲
ݕ߲  ൫ݔ, ܿ + ݕ)ߠ − ܿ)൯ (ݕ − 0    ,ݕ݀ (ܿ < ߠ < 1.

ொ

 

If we show 

ቚడூሚ
డ௬

,ݔ)  ቚ(ߦ  ≤  ஼
|௫ି௖|మ  , ߦ = ܿ + ݕ)ߠ − ߳), 0 < ߠ < 1, ∋ ݕ  ܳ ,                                                                     (3.4) 

∋ ݔ (0,∞)−  തܳ with C depending only on ߙ − ܽ and ߚ − ܾ, then 

ቮන ܽᇱ(ݕ)ܫሚ (ݕ,ݔ) ݀ݕ 
ொ

ቮ  ≤  
ܥ

ݔ| − ܿ|ଶ  න |ܽᇱ(ݕ)| |ݕ − ݕ݀ |ܿ
ொ

 

                                                  ≤  
ܥ

ݔ| − ܿ|ଶ  ‖ܽ‖ଶ ℎଷ ଶ⁄  ≤  
ܥ

ݔ| − ܿ|ଶ  ℎ, 

which leads to the desired inequality 

ଶܸ  ≤ ℎଶ ܥ  න
ݔ݀

ݔ| − ܿ|ଶ
(଴,ஶ)ିொത

 ≤  .ℎ ܥ

The rest of the proof is devoted to proving (3.4). We divide the matter into two cases; 
Case I: ܿ + ℎ < ∋ ݕ ݀݊ܽ ݔ ܳ ; and Case II: 0 < ݔ < ܿ − ℎ ܽ݊݀ ݕ ∈ ܳ 
We begin with case I. Since 0 < > ݕ  it follows from (1.2) that ,ݔ

ሚܫ߲
ݕ߲ (ݕ,ݔ)  =  2ିଵ ܭఈ,ఉ,௔,௕ { ଵܹ

ା (ݔ, (ݕ + ଶܹ
ା (ݔ, (ݕ +  ଷܹ

ା (ݕ,ݔ)}, 

where 

ଵܹ
ା (ݕ,ݔ) =  (2ܽ) ቀ

ݕ
ݔ
ቁ
ିଶ௕ 1

ݔ  ൬
1

ݔ − ݕ +
1

ݔ + ݕ
൰ ቆ ܨ 

ܽ − ܾ − ߙ + ߚ
2 ,

ܽ − ܾ + ߙ − ߚ
2 ; 3ܽ + ܾ ;  

ଶݕ

ଶݔ
ቇ, 

ଶܹ
ା(ݕ,ݔ) =  ቀ

ݕ
ݔ
ቁ
ଶ௔

 ൬
1

ݔ) − ଶ(ݕ + 
−1

ݔ) + ଶ൰(ݕ ቆ ܨ 
ܽ − ܾ − ߙ + ߚ

2  ,
ܽ − ܾ + ߙ − ߚ

2 ; 3ܽ + ܾ; 
ଶݕ

ଶݔ
ቇ, 

and 

ଷܹ
ା (ݕ,ݔ) =  ቀ

ݕ
ݔ
ቁ
ଶ௔

 ൬
1

ݔ − ݕ +
1

ݔ + ݕ
൰ 
߲
ݕ߲  ቊܨ ቆ

ܽ − ܾ − ߙ + ߚ
2  ,

ܽ − ܾ + ߙ − ߚ
2 ; 3ܽ + ܾ; 

ଶݕ

ଶݔ
ቇቋ 

                         =  
(ܽ − ܾ)ଶ − ߙ) − ଶ(ߚ

2(3ܽ + ܾ)  ቀ
ݕ
ݔ
ቁ
ସ௔ାଶ௕

 
1
ݔ  ൬

1
ݔ − ݕ +

1
ݔ + ݕ

൰  

ቆ ܨ                         
ܽ − ܾ − ߙ + ߚ + 2

2 ,
ܽ − ܾ + ߙ − ߚ + 2

2  ; 5ܽ + 3ܾ ;  
ଶݕ

ଶݔ
ቇ 

from the formula ௗ
ௗ௭

,ᇱ݌) ܨ  ;ᇱݍ ;ᇱݎ (ݖ = ᇱ݌) ܨ (′ݎ/ᇱݍᇱ݌)  + 1, ᇱݍ + 1; ᇱݎ  + 1 ;  .(ݖ 
We shall show 
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ห ௝ܹ
ା (ݔ, ห(ߦ  ≤  

ܥ
ݔ| − ܿ|ଶ  , ݆ = 1,2,3 ∙  

with C depending only on ߙ − ܽ and ߚ − ܾ.                                                                                                    (3.5) 
Since            

݈݅݉
௭→ଵ

,ᇱ݌) ܨ ;ᇱݍ ;ᇱݎ (ݖ =  
ᇱݎ) Γ (′ݎ)ܨ − ᇱ݌ − (′ݍ
Γ(ݎᇱ − ᇱݎ)Γ (′݌ − (′ݍ  

for ℛ (ݎᇱ − ᇱ݌ − (′ݍ > 0 (݂. [9, (9.3.4)]),  it follows from 
3ܽ + ܾ − (ܽ − ܾ − ߙ + −  2/(ߚ (ܽ − ܾ + ߙ − = 2/(ߚ 2(ܽ + ܾ) = 1 

and ߦ <  that ݔ

ቤܨ ቆ
ܽ − ܾ − ߙ + ߚ

2 ,
ܽ − ܾ + ߙ − ߚ

2 ; 3ܽ + ܾ ;  
ଶߦ

ଶݔ
ቇቤ  ≤  ܥ

for  0 < ݕ < ߙ with a constant C depending only on ݔ − ,ߚ ܽ − ܾ. 
We see that (ߦ ⁄ݔ )ିଶ௕  ≤ 1 for 0 < ݕ < ≤ when −2ܾ ݔ 0, and that  

| ଵܹ
ା(ݔ, |(ߦ  ≤  ܥ

1
ݔ  ൬

1
ݔ| − |ߦ +  

1
ݔ + ߦ

൰ . 

Since ߦ ∈  ܳ and ܿ + ℎ < ݔ| it follows that  ,ݔ − |ߦ ≥ ݔ|  − ܿ|/2. 
Also ݔ + ߦ > < ݔ ݔ|  − ܿ|.  These imply the inequality (3.5) with ݆ = 1. 
We note that the term ଵܹ

ା does not appear in 
ሚܫ߲
 ݕ߲

when ܽ − ܾ = − ଵ
ଶ
.  

For ଶܹ
ା(ݔ,  in a similar way, we have  ,(ߦ

| ଶܹ
ା(ݔ, |(ߦ  ≤ ൬ ܥ

1
ݔ| − ଶ|ߦ +  

1
ݔ) + ଶ൰(ߦ  ≤  

ܥ
ݔ| − ܿ|ଶ 

for ܽ − ܾ ≥  − ଵ
ଶ
 ,  which is the inequality (3.5) with ݆ = 2. 

To estimate ଷܹ
ା(ݔ, .݂ܿ) we use the formula  ,(ߦ [9,9.2.6]) : 

 
−1)′ݎ ,ᇱ݌)ܨ(ݖ (ݖᇱݎ;ᇱݍ − ᇱ݌)ܨ′ݎ − ;ᇱݍ,1 ;ᇱݎ (ݖ + ᇱݎ) − ᇱ݌)ܨ ݖ(ᇱݍ ;ᇱݍ, ᇱݎ + 1; (ݖ = 0. 

The substitution ݌ᇱ = (ܽ − ܾ − ߙ + ߚ + 2)/2 , ′ݍ = (ܽ − ܾ + ߙ − ߚ + 2)/2, 
ᇱݎ = 5ܽ + 3ܾ, ݖ =  ݏ݁ݒ݅݃ ଶݔ/ଶݕ

ቆ ܨ
ܽ − ܾ − ߙ + ߚ + 2

2  ,
ܽ − ܾ + ߙ − ߚ + 2

2  ; 5ܽ + 3ܾ ;  
ଶݕ

ଶݔ
ቇ 

=  
ଶݔ

ଶݔ − ଶݕ ଵܨ  −  
ܽ − ܾ − ߙ + ߚ + 2

2(5ܽ + 3ܾ)  
ଶݕ

ଶݔ − ଶݕ  , ଶܨ 

where  

ଵܨ = ቆ ܨ
ܽ − ܾ − ߙ + ߚ

2  ,
ܽ − ܾ + ߙ − ߚ + 2

2 ; 5ܽ + 3ܾ ;  
ଶݕ

ଶݔ
ቇ, 

ଶܨ  = ቆ ܨ
ܽ − ܾ − ߙ + ߚ + 2

2  ,
ܽ − ܾ + ߙ − ߚ + 2

2 ; 7ܽ + 5ܾ ;  
ଶݕ

ଶݔ
ቇ . 

This implies that 

ଷܹ
ା(ݔ, (ߦ =  ܿఈ,ఉ,௔,௕  ൬

ߦ
ݔ
൰
ସ௔ାଶ௕

 ൬
1

ݔ − ߦ +
1

ݔ + ߦ
൰
ଶ

ଵ |௬ୀకܨ   

+ ܿఈ,ఉ,௔,௕
ᇱ  ൬

ߦ
ݔ
൰
଺௔ାସ௕

 ൬
1

ݔ) − ଶ(ߦ −  
1

ݔ) + ଶ|௬ୀకܨ ଶ൰(ߦ   , 

where ܿఈ,ఉ,௔,௕ and ܿఈ,ఉ,௔,௕
ᇱ  are some constant depending only on ߙ − ܽ and ߚ − ܾ. We note that |ܨଵ|, |ଶܨ|  ≤ for 0 ܥ < ݕ <  ݔ

since 5ܽ + 3ܾ − (ܽ − ܾ − ߙ + −2/(ߚ  (ܽ − ܾ + ߙ − ߚ + 2)/2 = 4(ܽ + ܾ)− 1 = 2 − 1 = 1 and 7ܽ + 5ܾ − (ܽ − ܾ − ߙ +
ߚ + 2)/2  − (ܽ − ܾ + ߙ − ߚ + 2)/2 = 6(ܽ + ܾ)− 2 = 3 − 2 = 1. 
Thus in the same way as in the above cases, we have the inequality (3.5) with ݆ = 3, which completes Case I. Now we turn to 
Case II. It follows from 0 < ݔ <  that ݕ
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ሚܫ߲
ݕ߲ ,ݔ)  (ݕ =  2ିଵ ܭ௔,௕,ఈఉ  { ଵܹ

(ݕ,ݔ) ି + ଶܹ
,ݔ)ି (ݕ + ଷܹ

,ݔ)ି  , {(ݕ

where, 

ଵܹ
(ݕ,ݔ) ି = ൬ (ߙ2)− 

ݔ
ݕ
൰
ଶఈ 1
ݕ  ൬

1
ݕ − ݔ +

1
ݕ + ݔ

൰ ቆ ܨ 
ߙ − ߚ − ܽ + ܾ

2 ,
ܽ − ܾ + ߙ − ߚ

2 , ߙ3 + ; ߚ   
ଶݔ

ଶݕ
ቇ , 

ଶܹ
,ݔ) ି (ݕ =  ൬

ݔ
ݕ
൰
ଶఈ
൬

−1
ݕ) − ଶ(ݔ +

−1
ݕ) + ଶ൰(ݔ ቆ ܨ 

ߙ − ߚ − ܽ + ܾ
2 ,

ܽ − ܾ + ߙ − ߚ
2 , ߙ3 + ; ߚ   

ଶݔ

ଶݕ
ቇ , 

 
and  

ଷܹ
,ݔ) ି (ݕ =  ൬

ݔ
ݕ
൰
ଶఈ
൬

1
ݕ − ݔ +

1
ݕ + ݔ

൰  
߲
ݕ߲  ቊܨ ቆ

ߙ − ߚ − ܽ + ܾ
2 ,

ܽ − ܾ + ߙ − ߚ
2  ; ߙ3  + ; ߚ   

ଶݔ

ଶݕ
ቇቋ 

=  −
ߙ) − ଶ(ߚ − (ܽ − ܾ)ଶ

ߙ3)2 + (ߚ  ൬
ݔ
ݕ
൰
଺ఈାସఉ 1

ݕ  ൬
1

ݕ − ݔ +
1

ݕ + ݔ
൰  

 × ቆ ܨ 
ߙ − ߚ − ܽ + ܾ + 2

2  ,
ܽ − ܾ + ߙ − ߚ + 2

2  ; ߙ5 + ;ߚ3  
ଶݔ

ଶݕ
ቇ   

= −ܿ௔,௕,ఈ,ఉ  ൬
ݔ
ݕ
൰
଺ఈାସఉ

 ൬
1

ݕ − ݔ +
1

ݕ + ݔ
൰
ଶ

ଷܨ  −  ܿ௔,௕,ఈ,ఉ 
ᇱ ൬

ݔ
ݕ
൰
଼ఈା଺ఉ

 ൬
1

ݕ) − ଶ(ݔ −
1

ݕ) + ଶ൰(ݔ   , ସܨ 

where 

ଷܨ = ቆ ܨ
ߙ − ߚ − ܽ + ܾ

2 ,
ܽ − ܾ + ߙ − ߚ + 2

2 ; ߙ5 + ;ߚ3  
ଶݔ

ଶݕ
ቇ , 

ସܨ = ቆ ܨ
ߙ − ߚ − ܽ + ܾ + 2

2 ,
ܽ − ܾ + ߙ − ߚ + 2

2  ; ߙ7 + ; ߚ5  
ଶݔ

ଶݕ
ቇ . 

Since 0 < ℎ < ܿ, it follows that ߦ ≥ ܿ − ℎ 2⁄ ≥ ܿ 2 ≥ ݔ|  − ܿ|/2,⁄  which implies ଵ
(௫ାక)  ≤ ଵ

క
 ≤  ଶ

|௫ି௖| . This inequality and 
ଵ

|௫ିక|  ≤  ଶ
|௫ି௖| allows us to follow the line of the proof of Case I if (ߙ − (ߚ ≥ − ଵ

ଶ
 , and get the inequality (3.4) in Case II. We 

complete the proof of Lemma 3.3. 
Proof of Lemma 3.4: Let ܽᇱ be an atom with ܵ݌݌ݑ ܽᇱ  ⊂  [0,∞). It follows from Lemma 3.3 and the inequality 

ฮ ఈܶ,ఉ
௔,௕ܽᇱฮ

௅భ(଴,ஶ)
 ≤  2ଷ ଶ⁄  ܰ ൫ ఈܶ,ఉ

௔,௕ܽᇱ൯. 

that ఈܶ,ఉ
௔,௕ܽᇱ is integrable for (ߙ − (ߚ  ≥  − ଵ

ଶ
 , ܽ − ܾ ≥ ଵ

ଶ
ߙ ݎ݋   − ߚ ≥ − ଵ

ଶ
 , ܽ − ܾ =  − ଵ

ଶ
 . Thus, for these ߙ − , ߚ ܽ − ܾ , we 

have 

න ఈܶ,ఉ
௔,௕ ܽᇱ(ݔ) ݀ݔ =  lim

ఢ→଴ା
න ݁ିఢ௫మ
ஶ

଴
ఈܶ ,ఉ
௔,௕ ܽᇱ(ݔ) ݀ݔ .

ஶ

଴

 

By the fact 

ఈܶ,ఉ
௔,௕ ܽᇱ(ݔ) =  lim

ெ⟶ஶ
න ℋ௔,௕ 
ெ

଴

ܽᇱ(ݕ)(ݕݔ)ఈାఉ   ,ଶ(0,∞)ܮ ݊݅  ݕ݀ (ݕݔ)ఈିఉܬ 

we have 

න ఈܶ,ఉ
௔,௕ ܽᇱ(ݔ) ݀ݔ =  lim

ఢ⟶଴ା
lim
ெ⟶ஶ

න ݁ିఢ௫మ  න ℋ௔,௕ ܽᇱ(ݕ) (ݕݔ)ఈାఉ ఈିఉܬ  ݔ݀ ݕ݀ (ݕݔ) 
௠

଴

ஶ

଴

ஶ

଴

 

=    lim
ఢ⟶଴ା

 lim
ெ→ஶ

න ݁ିఢ௫మ
ஶ

଴

 න න ܽᇱ(ݐ) (ݐݕ)௔ି௕ ܬ௔ି௕ (ݐݕ) ݀(ݕݔ) ݐఈାఉ ఈିఉܬ  .ݔ݀ ݕ݀ (ݕݔ) 
ஶ

଴

ஶ

଴

 

Since 

หz୮ା୯ ห(ݖ)௣ᇱܬ  ≤ ,  ܥ ݖ > ᇱ݌  ݎ݋݂  0 ≥  −
1
2   ܽ݊݀ ݁ିఢ௫మ  (ݐ)′ܽ 

is integrable in (ݕ,ݔ, on (0,∞) (ݐ × (ܯ,0)  × (0,∞) ,  it follows that 

න ఈܶ ,ఉ
௔,௕ ܽᇱ(ݔ) ݀ݔ =  ݈݅݉

ఢ→଴ା
lim
ெ→ஶ

න ܽᇱ(ݐ) ܤெ
(ఢ) (ݐ) ݀ݐ

ஶ

଴

 
ஶ

଴

 

for (ߙ − ,(ߚ (ܽ − ܾ)  ≥  − ଵ
ଶ
  ,  where 
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ெܤ                                              
(ఢ)(ݐ) =  න ௧ܦ

(ఢ)(ݕ) ݀ݕ  ,
ெ

଴

 

௧ܦ                              
(ఢ)(ݕ) =  න ݁ିఢ௫మ(ݕݔ)ఈାఉܬఈିఉ ݔ݀ (ݕݔ) 

ஶ

଴

 .(ݕݐ)௔ି௕ܬ ௔ା௕(ݕݐ) 

To prove  

න ఈܶ,ఉ
௔,௕ ܽᇱ(ݔ) ݀ݔ

ஶ

଴

= 0 ,  

we shall show the following: 
(I) Let ݐ > 0, 0 < ߳ < 1 and 1 < ߙ If  .ܯ − ߚ > − ଷ

ଶ
 , ≠  −1 and ܽ − ܾ > − ଵ

ଶ
 , ெܤℎ݁݊ หݐ

(ఢ)(ݐ)ห  ≤ 
ߙ where C depends only on , ܥ      − ܽ ݀݊ܽ ߚ − ܾ. 
(II) For every  

ݐ > 0, lim
ఢ→଴ା

lim
ெ→ஶ

ெܤ
(ఢ)(ݐ) =    , ఈ,ఉ,௔,௕ܥ 

where 

ఈ,ఉ,௔,௕ܥ =  
Γ ൬3ߙ − ߚ3 + 8

6 ൰  Γ(ܽ)

Γ(ߙ) Γ(2ܽ + ܾ)  

where (ߙ − (ߚ >  − ଷ
ଶ

 ,≠ −1 ܽ݊݀ (ܽ − ܾ) > − ଵ
ଶ
 . 

If we show (I) and (II), then by the Lebesgue dominated convergence theorem we shall get 

න ఈܶ,ఉ
௔,௕ ܽᇱ(ݔ) ݀ݔ =  න ܽᇱ(ݐ) 

ஶ

଴

ஶ

଴

lim
ఢ→଴ା

lim
ெ→ஶ

ெܤ
(ఢ)(ݐ) ݀ݐ = ఈ,ఉ,௔,௕ܥ   න ܽᇱ(ݐ) ݀ݐ = 0

ஶ

଴

  

for (ߙ − (ߚ  ≥  − ଵ
ଶ
 and (ߙ − (ߚ  ≥  ଵ

ଶ
 and the proof of Lemma 3.4 will be completed. 

Let us prove (I) and (II). We shall use the formula (cf. [15,13.3(3), p.394]) 

න ݁ିఢ௫మ ఈାఉ(ݕݔ)  ݔ݀ (ݕݔ)ఈିఉܬ 
ஶ

଴

=
ߙଶఈΓ൫(4ݕ + 2൯/(ߚ2

2ଷఈାఉ  ߳൫(ସఈାଶఉ)/ଶ൯୻(ଷఈାఉ)  ݁ି௬మ/(ସఢ) 

                                                             ×  Φ ൫(3ߙ + ; 2/(ߚ ߙ3 + ; ߚ   ,ଶ/(4߳)൯ݕ  
where ߙ − ߚ > −3 2⁄  and Φ (݌ᇱ; ;ᇱݎ ;ᇱ݌) is Kummer’s confluent hyper-geometric series defined by Φ (ݖ ;ᇱݎ (ݖ =  ∑ ௞/ஶ(ᇱ݌)]

௞ୀ଴
,ᇱ݌,ݖ for , [!݇/௞ݖ] [௞(ᇱݎ) ᇱݎ ∈ , ܥ ᇱݎ  ≠ 0 ,−1,−2, … … … 
Since Φ (݌ᇱ; ;ᇱݎ it follows that for 0 ,ݖ is an entire function of (ݖ < ݕ ≤ 2√߳ , 
ห∫ ݁ିఢ௫మஶ
଴ ఈାఉ(ݕݔ)  หݔ݀ (ݕݔ)ఈିఉܬ   ≤ ଶఈିఉି߳ ܥ  ଶఈ ,                                                                                    (3.6)ݕ 

when (ߙ − (ߚ > − ଷ
ଶ
 . The asymptotic formula (݂ܿ. ,1  .݈݋ܸ,(3)3,6.13.1] .݌ 278]) 

Φ (݌ᇱ; ;ᇱݎ  (ݖ =  ୻(௥ᇱ)
୻(௣ᇱ)

 ݁௭ ݖ௣ᇲି௥ᇲ  [1 +  Ο(|ݖ|ିଵ)], ℛݖ → ∞ , ᇱݎ ≠ 0,−1, … .2, … . ., gives, for 2√߳  ≤   ,ݕ

                      ∫ ݁ିఢ௫మ ఈିఉܬఈାఉ(ݕݔ)  ݔ݀ (ݕݔ)  = ఈ,ఉܥ  ଵିݕ  +  ℛఢ (ݕ) ,ஶ
଴   |ܴఢ(ݕ)|  ≤   ଷ,                          (3.7)ିݕ ߳ ܥ

if (ߙ − (ߚ > − ଷ
ଶ

  , ≠  −1  , where C depends only on ߙ −   and ߚ

ఈ,ఉܥ =  
2
ଵ
ଶ Γ ൫(4ߙ + 2൯/(ߚ2

Γ൫(2ߙ)/2൯
 . 

Let ݐ > 0, 0 < ߳ < 1  ܽ݊݀  1 <  We divide the integral .ܯ

ெܤ
(ఢ)(ݐ) =  න ௧ܦ

(ఢ) (ݕ) ݀ݕ 
ெ

଴

 

into two parts: 

ெܤ
(ఢ)(ݐ) =  ቐන + න

ெ

ଶ√ఢ

ଶ√ఢ

଴

ቑ ௧ܦ 
(ఢ)  .  ݕ݀ (ݕ) 

We begin with estimating the integral 
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න ௧ܦ
(ఢ)(ݕ) ݀ݕ .

ଶ√ఢ

଴

  

By (3.6) and |ݖ௔ା௕ ܬ௔ି௕ (ݖ)|  ≤ ,  ܥ ݖ > 0   for (ܽ − ܾ)  ≥ − ଵ
ଶ
 , we have 

                       ቚ∫ ௧ܦ
(ఢ) (ݕ)݀ݕଶ√ఢ

଴ ቚ  ≤  ∫ หܦ௧
(ఢ) ≥ ݕ݀ ห(ݕ)  ଶఈିఉି߳ ܥ  ∫ ݕ݀ ଶఈݕ = ଶ√ఢ  ܥ

଴
ଶ√ఢ
଴                                (3.8)  

for (ߙ − (ߚ > − ଷ
ଶ
 and (ߙ − (ߚ > − ଵ

ଶ
  ,  where C depends only on (ߙ − ܽ) ݀݊ܽ (ߚ − ܾ). Let ݐ > 0 be fixed and let ߳ > 0 be 

sufficiently small so that 2√߳  < ଵ
௧
. By (3.6) and the fact ܬ௔ି௕(ݖ) =  Ο(ݖ௔ି௕) (ݖ → 0),  for ܽ − ܾ ≠ ,ݖ−,1−  … … ,  ݁ݒℎܽ ݁ݓ

ቮන ௧ܦ
(ఢ) (ݕ) ݀ݕ 

ଶ√ఢ

଴

ቮ ≤ ଶఈିఉି߳ ܥ  න ଶ௔(ݕݐ) ଶఈݕ ݕ݀  = ଶ௔ݐ ܥ  ߳௔
ଶ√ఢ

଴

 . 

Thus for every ݐ > 0, we have 

                                                                limఢ→଴ ∫ ௧ܦ
(ఢ) (ݕ) ݀ݕ = 0ଶ√ఢ

଴                                                                    (3.9)   

when (ߙ − (ߚ > − ଷ
ଶ
 and (ܽ − ܾ) > − ଵ

ଶ
 . 

 We next estimate the integral 

න ௧ܦ
(ఢ)(ݕ) ݀ݕ.

ெ

ଶ√ఢ

 

By (3.7), we have 

න ௧ܦ
(ఢ)(ݕ) ݀ݕ = ఈ,ఉܥ   ଵܷ + ଶܷ    ,

ெ

ଶ√ఢ

 

where  

ଵܷ =  න(ݕݐ)௔ା௕ܬ௔ି௕ (ݕݐ) ିݕଵ ݀ݕ,   ଶܷ =  න(ݕݐ)௔ା௕ ܬ௔ି௕(ݕݐ) ܴఢ(ݕ) ݀ݕ
ெ

ଶ√ఢ

 
ெ

ଶ√ఢ

 

for  (ܽ − ܾ) > − ଷ
ଶ

, ≠  −1. 

 The integral ଶܷ is estimated by (3.7) and |ݖ௔ା௕ ܬ௔ି௕ (ݖ)|  ≤ ,ܥ ݖ > 0 for ݖ > 0 for (ܽ − ܾ)  ≥  − ଵ
ଶ
 .  We have 

                                                                     | ଶܷ|  ≤ ∫ ߳ ܥ ≥ ݕ݀ ଷିݕ ஶܥ
ଶ√ఢ                                                    (3.10)                                                                    

for (ߙ − (ߚ > − ଷ
ଶ

 , ≠  −1 and (ܽ − ܾ) ≥  − ଵ
ଶ
 . Let ݐ > 0 be fixed, and let ߳ > 0 be sufficiently small and M be sufficiently 

large so that 2√߳  <  ଵ
௧

 <   : We divide the integral as follow . ܯ

ଶܷ =  ቐ න + න
ெ

ଵ ௧⁄

ଵ ௧⁄

ଶ√ఢ

ቑ (ݕݐ)௔ା௕ ܬ௔ା௕ (ݕݐ) ܴఢ ݕ݀ (ݕ)  = ଶܷ
ଵ + ଶܷ

ଶ ,   (ݕܽݏ ). 

By the fact ܬ௔ି௕ (ݖ) =  Ο (ݖ௔ି௕) (ݖ → ܽ ݎ݋݂  (0 − ܾ ≠  −1,−2, … . .,  
we have 

                  | ଶܷ
ᇱ| ≤ න  ܥ ଶ௔(ݕݐ) ݕ݀ ଷିݕ ߳ 

ଵ ௧⁄

ଶ√ఢ

 

≤  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

නܥ  ଶ௔(ݕݐ) ≥ ݕ݀ ଷିݕ ߳  ,  ߳ ଶݐ ܥ (ܽ − ܾ >  3 2⁄ ),

ଵ ௧⁄

଴

                                   

න ܥ ≥ ݕଵ݀ିݕ ߳ ଶݐ |ݐ ݃݋݈|ଶ ߳ ቀݐ ܥ + ൫1ൗ߳݃݋݈ ൯ቁ

ଵ ௧⁄

ଶ√ఢ

 (ܽ − ܾ =  3 2⁄ )

ଶ௔(ݕݐ)න ܥ ≥ ݕ݀ ଷିݕ ߳  ଶ௔ݐ ܥ  ߳௔     ቀ(ܽ − ܾ) <  3
2ൗ ቁ

ஶ

ଶ√ఢ

                        

      

for (ߙ − ܾ) >  − ଷ
ଶ

 ,≠  −1  ܽ݊݀ (ܽ − ܾ)  ≠  −1,−2 … … ∙ It follows from the fact that ݖ௣ା௤ ܬఈିఉ(ݖ) =  Ο(1) (ݖ → ∞) that 
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| ଶܷ
ଶ|  ≤ න ܥ ≥ ݕ݀ ଷିݕ ߳ . ߳ ଶݐ ܥ

ஶ

ଵ ௧⁄

 

Therefore, we have 
limఢ→଴ limெ→ஶ ଶܷ = 0                                                                                                                                  (3.11) 

for (ߙ − (ߚ  >  − ଷ
ଶ

  , ≠ ߙ) ݀݊ܽ  1−  − (ߚ  >  − ଵ
ଶ
  . 

 We turn to estimating ଵܷ.  We first deal with the case 2√߳  ≤  ଵ
௧

 ≤  :and divide the integral ܯ

ଵܷ =  ቐ න + න(ݕݐ)௔ା௕ ܬ௔ି௕ (ݕݐ) ିݕଵ ݀ݕ =  ଵܷ
ଵ +  ଵܷ

ଶ (ݕܽݏ) . )
ெ

ଵ ௧⁄

ଵ ௧⁄

ଶ√ఢ

 

By the fact ܬ௔ି௕ (ݖ) =  Ο (ݖ௔ି௕) (ݖ → 0) for ܽ − ܾ ≠ −1,−2, … … ., we have 

| ଵܷ
ଵ|  ≤ න ܥ ଶ௔(ݕݐ) .ݕ݀ ଵିݕ 

ଵ ௧⁄

଴

 

Thus if (ܽ − ܾ)  >  − ଵ
ଶ
 , then | ଵܷ

ଵ|  ≤ Let us evaluate ଵܷ . ܥ
ଶ . The function satisfies 

݀
ݖ݀ ఒିݖ   ఒܬ  (ݖ)  = ఒିݖ−   . (ݖ)ఒାଵܬ 

This and integration by parts leads to 

ଵܷ
ଶ = න (ଶ௔ିସ௕ିݐ−)  ଶ௔ିସ௕ିݕ  

݀
ݕ݀  ൫(ݕݐ)௔ାଷ௕ ିܬ௔ିଷ௕(ݕݐ)൯ ݀ݕ

ெ

ଵ ௧⁄

 

= ଵ[(ݕݐ) ௔ିଷ௕ିܬ ௔ାଷ௕(ݕݐ) ଶ௔ିସ௕ିݕ] (ଶ௔ିସ௕ିݐ−) 
௧ൗ

ெ  

 (ݕݐ) ௔ିଷ௕ିܬ ௔ାଷ௕(ݕݐ)න (ଶ௔ିସ௕ିݐ−) −
݀
ݕ݀

ெ

ଵ ௧⁄

 ݕ݀ (ଶ௔ିସ௕ିݕ) 

=  ଵܷ
ଶ,ଵ + ଵܷ

ଶ,ଶ (say) . 
The first term ଵܷ

ଶ,ଵ = (ܯݐ) ௔ିଷ௕ିܬ (௔ା௕)ି(ܯݐ)−  + ௔ିଷ௕ (1) satisfies หିܬ  ଵܷ
ଶ,ଵห  ≤ (ݖ) ఒܬ ݖ√ since ܥ =  Ο (1) (ݖ → ∞) and 

1 ≤  The second term . ܯݐ

ଵܷ
ଶ,ଶ =  (−2ܽ − 4ܾ) 

1
ݐ  න ݕ݀ (ݕݐ) ௔ିଷ௕ିܬ ௔ା௕(ݕݐ) ଶݕ

ெ

ଵ ௧⁄

 

is evaluated as follows:  

ห ଵܷ
ଶ,ଶห  ≤ ଵିݐ ܥ  න ≥ ݕ݀ ଶିݕ .ܥ

ஶ

ଵ ௧⁄

 

Thus, we have | ଵܷ
ଶ|  ≤ | and then ܥ ଵܷ|  ≤ ߳√in the case 2 ܥ  ≤  ଵ

௧
 ≤ In the case ଵ  .ܯ

௧
 < 2√߳ , we have | ଵܷ|  ≤  in the same ܥ

way as in the estimation of ଵܷ
ଶ, and in the case ܯ ≤ ଵ

௧
 , we also have | ଵܷ|  ≤ in the same way as in the estimation of ଵܷ ܥ

ଵ. 
Therefore, these and (3.10) imply 

                                                                   ቚ∫ ௧ܦ
(ఢ)(ݕ) ݀ݕெ

ଶ√ఢ
ቚ  ≤  (3.12)                                                                        ܥ

for (ߙ − (ߚ > −3 2⁄ ,   ≠  −1  ܽ݊݀  (ܽ − ܾ) > − ଵ
ଶ
 . 

 Combining (3.8) and (3.12), we have (I). The statement (II) is proved as follows : By (3.9) and (3.11), we have 

lim
ఢ →଴ା

lim
ெ→ஶ

ெܤ
(ఢ)(ݐ) = ఈ,ఉܥ   ݈݅݉

ఢ→଴ା
lim
ெ→ஶ ଵܷ = ఈ,ఉܥ   න(ݕݐ)௔ା௕ ܬ௔ି௕ (ݕݐ) ିݕଵ  × ݕ݀

ஶ

଴

 

                                                                       = ఈ,ఉ නܥ  ିݑ (ݑ) ௔ି௕ܬ
ଵ
ଶ ݀ݑ = ఈ,ఉ,௔,௕ܥ 

ஶ

଴
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for every ݐ > 0 when (ߙ − (ߚ > −3 2,    ≠  −1⁄  ܽ݊݀ (ܽ − ܾ) > − ଵ
ଶ
 . We have used ∫ ିݑ (ݑ) ௔ି௕ܬ

భ
మ

ஶ
଴ ݑ݀  =  Γ(ܽ) /

 ൫Γ(2ܽ + ܾ)√2൯ for (ܽ − ܾ) >  − ଵ
ଶ
 . 

 
Remarks:  
(i) For ߙ =  ଵ

ସ
+ ఓ

ଶ
ߚ,  =  ଵ

ସ
− ఓ

ଶ
 ,   ܽ =  ଵ

ସ
+ ఔ

ଶ
 , ܾ = ଵ

ସ
− ఔ

ଶ
 , all the results in this paper reduce to that of Yuichi Kanjn, A 

transplantation theorem for the Hankel transform on the Hardy space, Tohuko Math. J. 57(2005), 231-246. 
(ii)Results of Yuichi Kanjn are particular case of ours. 
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