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A TRANSPLANTATION THEOREM FOR THE HANKEL TYPE
TRANSFORM ON THE HARDY SPACE

Abstract

In the present paper the transplantation operators for the Hankel type transform are
considered and their boundedness on the real Hardy space is established. As its
application, we have obtained the Hormander-Mihlin type multiplier theorem for the
Hankel transform on the real Hardy space.
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1.Introduction

The Hankel type transform of H, 5 f of order « — 8 of a function on the open half-line (0, ) is defined by

Hapf ) = [ 1O GOyt e, y >0,
0

where J,_ is the Bessel type function of the first kind of order & — . The Bessel functions with a — = —% anda—f = % are

2 2
J1(2)= ,— cosz, Ji(z) = ’— sinz
2 nz 2 nzZ

and the Hankel transforms H 1 f and H1 f are the cosine and sine transforms:
2 2

H.1fO) = j% Of F©) cosytde, 3 f ) = E Of £(6) siny t dt .

It is known that for (« — ) = —% , M, p is an isometry on L?(0, ) (Parseval’s theorem) for the Hankel type transform ) and
Heap - Hep =1 (The inversion formula for the Hankel type transform), and

ff(x) g(x) dx = f}[a,ﬁf(x) Heop 9(x) dx
0 0

for f,g € L2 (0,) (Plancherel’s theorem for the Hankel type tranform), where I is the identity operator and L? (0, «) is the
Lebesgue space of functions on (0, o) such that

1
% 2
Il = | [irr ax | <=
0
We shall consider the composite
Tc?ﬁ = }[aﬁ '}[a,b '

which is an isometry on L2 (0, ) for (a — 8) = —% , (a=b) > —%. For f € L'(0,00) with H, ), f € L (0,00), T;f f has
the integral representation

Teg f(x) = f f @ GO Joop ) dt (xy)*F Jop (y)dy, x>0,
00

We call T;f the transplantation operator from a — b to @ — 8. The aim of this paper is to prove that the transplantation operators

T;ﬁ are bounded on the real Hardy space.

As an application, we shall obtain the Hormander-Mihlin type multiplier theorem for the Hankel type transform on the real Hardy
space.

The main tools of our proofs are the atomic decomposition and the molecular characterization of the real Hardy space, and
Schindler’s integral representation [13] of T;ﬁ . We recall the representation here. Let T, 5 , , be an operator defined by
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Ta,ﬁ,a,b f(x) = Iim5—>0+ .ﬂx_y|>5f()/) ia,ﬁ,a,b (x:}’) dy + k(arﬁr a, b) f(x) ) (11)

k (a,B,a,b) = Cos ((a—ﬁ—a+b)g> :

where
Fapar G0 = Kugan )t () s F (522 S22 130w ). (1.2)
2a
- %Ka’ﬁ’a’b (%) (xiy_'_xj-y)
< F (a—b;a+ﬁ’a—ﬁ-2'-a—b 3a+b: i;_j)
Kaﬁab: 2Ma=pra=b+2)/2) , for O0<y<ux,
P42 T@a+b)T ((a—p—a+b)/2)
and
Iypap ,¥) = Tupap O.%), for y>x>0.
Here

C @)@,

, zk lz| <1,
|
] )y k!

F(p,q;r;z)=
where (1)y =1, (), = AA+1)...(A+k-1) , k=1 lfa—B=a—b+2kandk =012... . then [, o, (x,y) =0

for(y >x>0). Ifk=0,-1,-2 ... then I, 3,5, (x,y) =0 forx >y > 0. Inthese cases, I, g 5, (x,y) have more
elementary forms (See [13]).

Schindler proved that if (a« — 8),(a — b) = — % then the following (A) and (B) hold:

A. For f € C(0,) ,T;E’ f(x) = Typap f(x) a.e. x>0, where C.(0,0) is the space of infinitely differentiable
functions of compact support in (0,) ;
B. Let|<p<owand —i <a<l1l- i. Iffowlf(x)lp xP? dx < oo, then the value T, g ., f(x) exists for a.e. x > 0 and

[ITepas GO w0 ax < [IrcaP xrvax
0 0

with a constant C independent of f. Guy [6] proved that the operators T;ﬁ initially defined on L?(0, ), are extendable to
bounded operators on the LP — spaces, 1 < p < oo, and this is the first of the transplantation theorem for classical expansions.

Schindler [13] showed a refined version of Guy’s result by getting the explicit formula of T;ﬁ as we recalled above.

To consider the transplantation operators T;f for the case p = 1 is our problem, and the main result of this paper is that the

operator T;ﬁ are bounded on the real Hardy space which gives us the Hormander-Mihlin type multiplier theorem for the Hankel

type transform on the real Hardy space. ~ There are transplantation theorems for other orthogonal expansions. Askey and
Woinger [2] gave a transplantation theorem for the ultra spherical series, and Askey [1] generalized their theorem to the Jacobi
series. Some transplantation theorems are in Gilbert [5] and in Muckenhoupt [12]. The Laguerre series case is in Kanjin [7].
Miyachi [10] and [11] quite recently obtained a transplantation theorem for the Jacobi series in weighted Hardy spaces.

2. Results
Let H'(R) be the real Hardy space that is the space of the boundary functions f(x) = R F(x) of the real part R F(z) of
functions F(z) in the Hardy space H'(R2) = {F(z); analytic in RZ and ||F||H'(]R3) = Supiso fiJF(x +it)| dx < «} on the
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upper half plane R2 = {z = x + it ; t > 0}, with the norm ANl = ||F||Hf(R1).We shall work on the space H'(0, ) defined
by

H'(0,0) = {h (o) ;h € H(R), Supph < [0,0)}.
where [0,00) is the closed half line and we endow the space with the norm

If 100y = Al wy » where h € H(R),

Supph < [00) and f = h () -
We remark that
H'(0,0) = {h]@u); h € H(R), even}

and ¢; Al @y < Nfllgiom < c2 IRl gy With positive constants ¢, and ¢, , where f = h |y and h e H'(R) is even.
This fact is in [4, chapter I1l, Lemma 7.40].
Our main theorem is as follows:

Theorem
(i) Let (@ — B) = —> and (a — b) > — 2. Then T;7, initially defined on H'(0,00) N L2(0,0), is uniquely extended to a
bounded operator on H'(0, ) and if we still denote it by T;'b, then

”T;’;?f”Hf(Om) < Clflly oy » for f € H(0,)

with a constant C depending onlyon a« — 8 and a — b.
1
@iy If(a—p) = —% , then Ta;, is uniquely extended to a bounded operator from H'(0, ) to L'(0, ), that is

1
Ta,,lzif <C ”f”H,(O,oo) ) fOT' f € H'(O, OO)

L'(0,0)
with a constant C depending onlyon a« — g and a — b.
As an application of our theorem we deal with the Hormander-Mihlin type multiplier theorem for the Hankel type transform. Let

(a—-pB) = —%and ® € L” (0,). We define a Hankel multiplier operator Mg’ﬁ with multiplier ¢ by

MGPf=Hop (6Hap (). for f € 12(0,).
Since H, p is an isometry on L*(0, o), the multiplier operator Mgﬁ is a bounded operator on L?(0, o) with the operator norm

ll®]l... We also define a Fourier multiplier operator M, with multiplier m € L” (R) by
M, h = T‘l(m T(h)) , for h € L? (R), where F and F~1!
are the Fourier transform and the inverse Fourier transform, respectively:

1 ) 1 )
F(h =—fhxe“"5dx,7—"‘1 x=—f e* d
(n©) \[Z_HR (x) (9)(x) \[z—nRg(f) $
The Hormander-Mihlin multiplier theorem for H'(R) says that, if m with [|m|| =) < A satisfies the condition

1
(% o cterenn |52 i df)z <AR forR>0, where 2.1)
A is independent of R, then the Fourier multiplier operator M, initially defined on H'(R) n L? (R) is uniquely extended to a
bounded operator on H'(R). If we still denote it byM,,,, then 1M bl my < CAllRN, Ry for h € H'(R) with C independent
of h and m (see [4, Chapter I1l, Theorem 7.30]). We may refer to [14, Chapter 1V, 83,86] and [4, Chapter I, Theorem 6.3] for
the LP — space case.

Corollary
Let(a —B) = —%. Suppose that ¢ with |||l =(o.) < A satisfies the condition

1
1 dp()|? 2 _
(E fR <lyl<zr | dy dy) <AR™ (2.2)
for R > 0, where A is independent of R. Then the Hankel multiplier operator Mg'ﬁ initially defined on H2(0, ) N L?(0, ) is
uniquely extended to a bounded operator from H(0, o) to L'(0, ). If we also denote it by Mgﬁ then

|57 | SCAlflym  for f € HYO,) withC

11(0,00

independent of f and ¢ .
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The corollary is deduced from the theorem as follows: Let ¢ € L* (0, o) satisfy the condition (2.2) and let f e H*(0,0) N

(0, ).

We extend ¢ and f to the functions on R, as even functions and we denote them by ¢, and f, . Since the function ¢, satisfies

the condition (2.1), the Fourier multiplier operator My is a bounded operator on H*(R). Since H 1 f(y) = F f, (y), y >0,
2

1 1
we see that My, f. (x) = M¢2 f(x), x > 0. Further My, fe is an even function. Thus M¢2 has a unique bounded extension on
1
H*(0, ). The inequality [|gll;10w) < 1gll511(0,0y hOIdS, and so M, * is uniquely extended to a bounded operator from

1

H(0,) to L} (0, 0). Let (@ —B) > —% . It follows from the theorem that T_“f is a bounded operator on H*(0, ) and Ta_g is

2
11
a bounded operator from H(0, ) to L' (0, o). Therefore, the identity Mgﬁ =T, ;M,* T%F on 12(0, ) implies the
' -2
corollary.

Remark : Leta — 8 > — % . Assume that Mgﬁ is a bounded operator on H2(0, ). Then ¢ = 0 if we assume additionally that

1
¢ satisfies ¢ = H 1 @ for some @ € L*(0, ). For, we first note that M(; is a bounded operator on H(0, o) by the identity
2

1 1 1 1
M= i Mg‘BT;B and the theorem. Let f € H'(0,) N € (0, ). Since M;f € H(0, o0) , M f has the vanishing

mean property:
Q1
f ]V[; f(x)dx=0.
0
We extend ¢ and @ to the even functions on R, and denote them by ¢, and ®,. We note that ¢, = F &, . Further, we extend f

1
to the odd function on R, which is denoted by f,. Since — i 7-(% f&y)= F£,(y), y>0,we see that M;f(x) = Mye fo(x),
x > 0. The identity My, f, = @, * f, holds. Therefore, we have

0= f fd)e(y))%(x—y)dydx
0 —e

[ee]

-]

—0
e o 0

:fcpe(y) ffo(u)dudy+ fcbe(y) fmfodudy
0 -y I

—00

@, (y) ffo (x —y)dxdy
0

[ee]

y o w
= —2]@(}/) Off(u) dudy = -2 Off(u)ufd)(y) dy du,

0
that is fowf W) ®(y) dy du = 0for all f € H*(0, ) NCZ (0, ), which implies that fu°° ®(y) dy is a constant function in u,
and so ®(y) =0 for a.e.y > 0. We conclude ¢ = 0.
We conjecture that without the additional condition the above statement holds, that is if Mgﬁwith ¢ € L*(0,)is
bounded operator on H*(0, ), then ¢ is constant, where (@ — B) > — %

The theorem will be proved in the next section. The atomic decomposition and the molecular characterization of the real
Hardy space will play important role in our proof. A real valued function a is called an atom centered at c if

(i) a(x) is supported in an interval [c — oo+ E]
2 2

1
(i) llall, < h™2, and (jii) f, a(x)dx = 0.The space H*(R) is characterized in terms of atoms: f ¢ H'(R) if and only if

f: leja.’
=0

where each g; is an atom and
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Z|/1j| < .

=0

inf Y 14
j=0

the infimum being taken over all decompositions, and the series

Z 4; a;
j=0
converges in H* — norm.
We deal with the functionsf € H(0, o). These functions are also characterized as follows (See [4, chapter 111, Lemma
7.40]) : f € H*(0, ) if and only if
j=0

Yyl <o

j=0

inf Y 141,
j=0

the infimum being taken over all such decompositions. By this decomposition we see that L (0, ) n L2 (0, o) is dense in
H(0, o).

We call a real-valued function M a molecule centered at c if M satisfies the following conditions:
1

()N (M) = M?

Further, the H* — norm |||l 1) is equivalent to

where each g; is an atom with Supp a; < [0, ) and

Moreover, the norm ||| ,1(o ) is equivalent to

1
2

2 R .
Lz(lR) | Cl MLZ(]R) < o ’
(ii)fR M (x) dx = 0.
We recall N(M) the molecular norm of M(x). The molecular characterization asserts that if f = Z; M; with molecules M;

and %, N(M;) < oo, then f € H' (R) and ||fll 1y < C Z; N(M;) with an absolute constant C. For the atomic decomposition
and the molecular characterization, we may refer to [4, I11].

3. Proofs: The theorem will be proved by the following two lemmas:
Lemma3.1: If (a — b) > — % then T;Z'gﬁand Ts“fgb are uniquely extended to bounded operators on H*(0, ), that is

1751y = €10

”Tsadésbf”},l(oyw) < Cllf (0.0
for f € H'(0, ) with a constant C depending only on a — b.

Lemma 3.2: (i) If (a — b) > —%and (a—»b) > —%, then T;ﬁ is uniquely extended to a bounded operator on L' (0, o), that is
NTepfll gy < C M luroey, £ € H(O,00)
with a constant ¢ depending onlyon « — g and a — b.
1
@iiyIf(a —pB) = —% , then Ta; is uniquely extended to a bounded operator from H*(0, ) to L1 (0, ), that is
1

T_E

ap

< Cfllgromy + for f € H'(0, o) with a constant ¢ depending only on & — 3.

L1(0,00)

We see here that the theorem is deduced from these lemmas. We first note that the identity T , TP = T;ﬁ on L2(0, )
holds, since
Top TP = Hop Hy Hy Hep = Hop Hap = T
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Let us prove the part (i) of the theorem. Let (o — B) = —%and (a-p) > —%. It follows from Lemma 3.1 that Tsac;f’gb, initially

defined on H1(0, ) N L2(0, o) is uniquely extended to a bounded operator on H*(0, «). Since 5a + 3b > % it follows from

the part (i) of Lemma 3.2 that the operator T;§’3bis uniquely extended to a bounded operator on H*(0, ). Because of the fact
Ta,b — TSa,3b Ta,b

af a.p 5a,3b
on H1(0, ) n L?(0, =), we see that T;ﬁ has a unique bounded extension on H(0, o). The part (ii) of the theorem is the part
(ii) of Lemma 3.2 itself.
Now we turn to the proof of Lemma 3.1 :
Let (a — B) > —%, and put

[ee]

X
X\ 2@ dt 1 X\ 20

U fx) = f O ro% . sevre = f 6 roa
for x > 0. Then we see that

Ty f =2@a+b)UCDf—f TLl f=2@a+b)SCPf—f
for f € L?(0, o) by [13, p 383, line 5 from below and p.381, line 8 from below]. In [8, Proposition], we proved that
U@=b) gnd $@-b) gre extended to bounded operators on H(0, o) for (@ — B) > — % and thus, T3 *"and Ty, have the same
boundedness, which is Lemma 3.1.

Lemma 3.2 will be reduced to the following Lemma 3.3 and Lemma 3.4.

Lemma 3.3
Assume that (« — B, a — b) satisfies (o — g) = —% (a—p) = % or (a—p) = —% ,a—b= —%. Let be an atom centered

at ¢ with Suppd c [0,c0), and we regard T;ﬁ d as T;ﬁ d(x) =0 for x < 0. Then, there exists a constant C depending only on

a — B and a — b such that
1 1
N (Teg d) = Tag al? I —cl Tgg dl? <c (3.1)
Lemma 3.4
Let (@ — B) > —% and (a — b) = % .Then, J,"T¢5 d(x) dx = 0 for every atom d with Suppd C [0,c0).
We show first that Lemma 3.2 is obtained by Lemma 3.3 and Lemma 3.4. Let f € H*(0,) n L%(0, »).

Let

Jj=0
be an atomic decomposition of f such that
DIl <o
j=0
where C is independent of f. To prove Lemma 3.2, we shall first show that
T;’[? f(x)= X204 T;é’ aj (x) a.e. x>0, (3.2)

for(@=p)z =3 (@=f)zyora—f 2 —; a=b= - Letg €C(0,0). Then we have
fT;lg f(x) g (x) dx = f}[aﬁ Hap f(x) g(x) dx.
0

0

= [ 1) Ho Hop 9 ax.
0

by Planchevel’s theorem and the inversion formula. The inequality

|Hap Hap gC)| < C||Hopgl holds, and ||#, 9|

<
L1(0,00) L1(0,0) @

Since g € C2(0, ). For every atom a; , we have ||aj||L1(0 o =1

Thus we have

ff(x) Hop Hap g (x) dx = lej a; (x) Hap Hep g(x) dx
0 0o j=0
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a; (x) Hap Hop g(x) dx

A

DM 3D
0\80\8

Haop Hop a; (x) g (x) dx.

-
Il
(=]

We remark that the inequality [|¥]l,1(9 ) < < 2iN (W) holds. (c¢f.[4, Chapter 111, Lemma 7.11]). It follows from Lemma 3.3
that
— ,b
1#0p0 @l = TS0 0], < CN (TSR 0) <

Here and below, C denotes a positive constant which may dlffer at each different occurrence. Thus, the last sum is equal to

f Z A Hap Hap a; () g (x) dx,
0 Jj=0
which leads to

[ee]

f Tab f(x) g(x) dx = f ZA T;‘ﬁ a; (x) g(x) dx

0
forallg € (0, ), and we get (3.2).
Because of (3.2), we have

1728 £l <€ DN @) TERa) < Zu |N (192 q,)
Jj=0

<c Zm < Clfllyago0)
j=0

for(a —p)= —=, (a—b) = by Lemma 3.3, Lemma 3.4 and the molecular characterization. If (o« — B) = —% ,a—b=

1
—=, then
2

1728l Zm g all,, <€ Y Il N (e a)
j=0

< Zm < Clflurom) -

j=0
These inequalities allow us to use the standard density argument, and we obtain Lemma 3.2.
We now come to the proofs of Lemma 3.3 and Lemma 3.4

Proof of Lemma 3.3
Let a’ be an atom centred at a with Suppa c [0, ). Let Q = [c —h/2, c+ h/z] c [0,00) be the smallest interval containing

Suppa’. Since chﬁ is an isometry on L?(0, ), it follows that
1
ITeg a'll, = Na'll, < n7 (3.3)
To prove (3.1), it is enough to show that
a,b
I el 7esall, <cri.
We put Q = [c — h, ¢ + h]. we write

I-drggall=14 [ + [ tx-celnpawl
(00nQ) (0,0)-Q
= Vi + V, (say).
For V;, we have by (3.3),

< et <n.
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An essential part of the proof is to show V, < ¢ h. By Schindler’s result (A) and (B), we see that T;ﬁ = Tapap ON L*(0,0).
Thus Schinder’s integral representation (1.1) leads us to

T“[), a'(x) = I|m f a)I(,y)dy+k(a—p,a—b)a (x)a.e. x>0,
|x—y|>5
where we put
I(x,y) = TypqpCx y) for simplicity. For x € (0,00) — Q, we have

T;ﬁ alx) = f a )1 (x,y)dy,
Q

and thus,
2

v, = f lx — c]? f a'(y)I(x,y)dy| dx.
(0,0)-Q Q
The Taylor expansion of I (x,y) in y at ¢ and the cancellation property of atoms imply

. ol
[enTana=[¢0) 5 (eroo-a)o-aan 0<o<1
Q Q
If we show

|5 9] < 55 f=croly— 0<6<Ly€q, (3.4)
x € (0,0) — Q with C depending only on « — 8 and a — b, then

f a I (x,y) dy

Q

C
PR f la’ O |y —cl dy
Q

c
x—c llall, 3% <

< h,
lx — cl?

which leads to the desired inequality

5 dx
V, <Ch f m <Ch
(0,0)-Q
The rest of the proof is devoted to proving (3.4). We divide the matter into two cases;
Casel:c+h <xandy €Q;andCase ll:0 <x<c—handy €Q

We begin with case I. Since 0 <y < x, it follows from (1.2) that

ol
—(xy)— 27 Kapap (Wi (x,y) + W3t (e, y) + Wit (x, )},
where
. B W11 1 a—-b—a+B a—-b+a—-p y?
Wit (e y) = (20) (;) ;(x—y+x+y)F( 2 ’ 2 8a+b; )
. _ XZG 1 -1 a—-b—a+p a—b+a—ﬁ y_
W, (x:}’)—(x) ((x_y)z+(x+y)2)F( 2 ' 2 b; 2)
and
. _ Yy 2@ 1 1 a —a+B a—b+a-— ﬁ y
e
_(a=b)>—(a—p)* (y\*a+2b 1 1
- 2(3a +b) (;) ;(x—y+x+y)
F(a—b—g+ﬁ+2’a—b+g—ﬁ+2;5a+3b;y_z>

from the formula% F@.qr;z)= ('q/YF@ +1 ¢ +1,r"+1; z).
We shall show
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C
|V|/j+ (x,f)| < |x_— j=123-

cl?’
with C depending only on ¢« — 8 and a — b. (3.5)
Since
F)Ir (' -p' —4q)
L' —p)T@' —q)

lmF (p',q";r"2) =
for R(r'—p'—q") > 0(f.[9, (9.34)]), it follows from

3a+b—(a—b—a+pB)/2 —(a—b+a—-p)/2 =2(a+b)=1
and ¢ < x that

<C

a—-b—a+pf a—-b+a-— 2
|F( 5 ﬁ, 5 B;3a+b;i—2>
for 0 <y < x with a constant C depending onlyon a — 8, a — b.
We see that (§/x)72% < 1for0 <y < x when —2b > 0, and that
Wt &) <C ; (—lx i g + %) .

Since§ € Qandc+h < x, itfollows that |x — & = [x —c|/2.
Also x + & > x > |x — c|. These imply the inequality (3.5) with j = 1.
We note that the term W,;* does not appear in

ol
ay
whena —b = —%.

For Wyt (x, &), in asimilar way, we have

. 1 1 C
w50l <€ (= * wrey) < et

fora —b = —=, which is the inequality (3.5) with j = 2.
To estimate W5t (x, §), we use the formula (cf.[9,9.2.6]) :

rA—2)F@' . q';r'z) —r'F(p' = 1,q";v";2) + (' —q')zF(@p',q';r'+1,z) = 0.
The substitutionp’ =(a—b—a+p+2)/2, ¢ =(a—b+a—p+2)/2,

r' = 5a + 3b, z = y?/x? gives
a-b—a+f+2 a-b+a—-F+2 2
F d , £ :5a+3b; L
2 2 x?
x? a—-b—a+p+2 y?
= Fy = Fy,
x? —y? 2(5a+3b) x?—y?
where
__fa—b—a+p a-b+a—-p+2 y?
Fl—F( 5 , > ,5a+3b,x2,
—-b—a+B+2 a-b+a—-f+2 2
Fz=F(a ; d : > : ;7a+5b;z—2>.

This implies that
4a+2b 1 1 2

(x—f_'_m) Fily=

6a+4b
+ Capab (z) ((x _15)2 T« jf)z) Faly=¢

where ¢, g .5 and c; 4 ., are some constant depending only on @ — g and a — b. We note that |F; |, |[F,] <Cfor0O<y <x
since5a+3b—(a—b—a+p)/2— (a—b+a—-pB+2)/2 =4(a+b)—1=2—-1=1land7a+5b—(a—b—a+
B+2)/2 —(a—b+a—-B+2)/2 =6(a+b)—2=3-2=1.

Thus in the same way as in the above cases, we have the inequality (3.5) with j = 3, which completes Case I. Now we turn to
Case Il. It follows from 0 < x < y that

W (x.§) = Capan (2)
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61
— (x V)= 27 Kopap Wi (x,y) + Wy (x,y) + Wy (x, )},
where,
2a] 1 1 a—B—a+ba—-b+a-—-p x
= — + F +B5: =
Wi )= o ()L (Aoe Ay (At AT e g, yz)
x\2@,/ -1 -1 a—f—a+b a—b+a—ﬁ - x?
- = —_ + J—
WZ (x:}’) (y) ((y_x)z (y_'_x)z) ( 2 ’ 2 yz
and
2@, 1 1 0 a—f—a+ba—b+a—-p x?
- = (= + —{F “3a+p; —
Wi () (y) (y—x y+x> 6y{ ( 2 ' 2  3a ﬁ’yz
_ (@=p)*—(a—b)* (x)f’““ﬁl( 1,1 )
2@a +p) y y\y—x y+x
< F a—-f—a+b+2 a—b+a—B+2_5 43 x?
2 ] 2 ya ﬁyyz
X\ 6a+48 1 1 \2 x\8a+68 1 1
= — — — ' — — FE
Cabap (y) (y—x+y+x) Fs = Capap (y) ((y—x)2 (y+x)2) +
where
E=F a—f—a+b a—b+a—B+2_5 +3 x?
37 2 ! 2 Sat 35
F—F a—f—-—a+b+2 a—-b+a—-—f+2 7@ +5 x?
= 5 , > a 0 ; 52
Since0 < h <, itfollows thaté > c—h/2 > c/2 > |x — c|/2, which |mpI|es( o = % < I% This inequality and
! <—allowsustofollowtheIlneoftheproofofCaseI|f(a ﬁ)>—— and get the inequality (3.4) in Case II. We

le=gl —
complete the proof of Lemma 3.3.
Proof of Lemma 3.4: Let a’ be an atom with Supp a’ < [0, ). It follows from Lemma 3.3 and the inequality

ITepallg,,, < 272N (Tyga).
thatT;;),’a’ is integrable for (a« — B) = —%, —bz; ora—Bz—;, a—b= —%.Thus,forthesea—ﬁ,a—b,we
have
ab — i —ex?2pab
f Typa (x) dx = EILr(an e T pa (x) dx.
0 0
By the fact
T () = lim f Hap @ G)Y)TP JopCey) dy in 12(0, o),
we have
f T:'[l),’ a'(x) dx = Ilrg Ilm f e=ex? f Hop @' (v) (xy)oth Ja—p (xy) dy dx
, Py
0 0
= lim lim f @@ 005 gy ) de @Y gy ) dy ax
E— —00
0 0
Since

1
|Zp+q]p/(z)| <C, z>0 for p' = _E and e—ex2 a(t)

is integrable in (x,y,t) on (0,) x (0, M) x (0,), it follows that

[ee]

fT“[l),’a (x) dx = llm Ilm fa'(t) B,f,f) () dt
0 0
for (a — B),(a —b) = —% , where
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M

BO®) = f DOy dy |

0

[ee]

PO (y) = f e ()] (ay) dx (£9)™ Juup (E9).
0
To prove

f T;’[? a'(x)dx =0,
0

we shall show the following:
(DLlett>0 0<e<landl<M. fa—B>-> % —landa—b> -1, then|BL(t)| <
2 2 M

C , where C depends onlyon a« — 8 and a — b.
(1) For every

; ; @y —
t>0,  lim lim B, )= Capan

F(ga — g[} + 8) [
Capar = " T@T@a+1D)
where (a — B) > —% ,# —1and (a —b) > —%.
If we show (1) and (1), then by the Lebesgue dominated convergence theorem we shall get

[ee] [ee]

where

b — ’ H H (e) — ’ —
f T;B a'(x) dx = f a'(t) EILr(nL nl4l_r>rgo By () dt = Copap f a()dt=0
0 0 0
for (a —p) = — % and (¢ — B) = %and the proof of Lemma 3.4 will be completed.

Let us prove (1) and (I1). We shall use the formula (cf. [15,13.3(3), p.394])

y2eT((4a +26)/2)
23a+B ((4a+2p)/2)r(3a+p)

f e—Ex2 (xy)a+ﬁ ]a—ﬁ(xy) dx = —y2/(4¢€)

0
x & ((Ba+p)/2;3a+B; y2/(4e)),
where @ — 8 > —3/2and @ (p’; r’; z) is Kummer’s confluent hyper-geometric series defined by @ (p’;1';z) = Yo, [(®" )/
Gl [z87K" forz,p', v €C, v #0,-1,-2,..... ..
Since @ (p';r'; z) is an entire function of z, it follows that for 0 <y < 2+/e,

|f0°°e—ex2 )P g (xy) dx| < Ce227F y2a, (3.6)
when (a — B) > —%. The asymptotic formula (cf.[3,6.13.1(3),Vol. 1, p.278])
O (p';rhz)= %:,)) e?zP' 7 [1+ 0(|z|™1)], Rz » o, 1’ #£0,—1,....2, ..., gives, for 2\ <y,

Iy e (ey) P Jop (xy) dx = Copy '+ R (¥), IR < Cey, 3.7)
if (a—p) > —% , # —1 , where C depends only on @ — 8 and
1
_ 22T ((4a+2p)/2)

C =
b r((2a)/2)
Lett >0, 0<e <1 and 1< M.We divide the integral

M

BP© = [ 0 0y ay
0
into two parts:

2ve M

BP0=1[+ [ (00 ma

M t Y.
0 2Ve

We begin with estimating the integral
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2ve
f D (y) dy.

0
By (3.6) and |z¢*? J,_, (2)| <C , z>0 for(a—b) = —%,We have

|f02x/EDt(e) (y)dy| < fOZVE'Dt(e) (y)| dy <Ce22F fozx/Eyza dy=¢C (3.8)
for (a — B) > —%and (a-p) > —% , where C depends only on (« — ) and (a — b). Let t > 0 be fixed and let € > 0 be
sufficiently small so that 2v/e < % By (3.6) and the fact J,_,(z) = 0(z% ") (z > 0), fora—b # —1,—2z,...... , we have

2e 2e

f Dt(E) (y)dy|<Ce?* B f y2% (ty)** dy = C t?* €.

0 0
Thus for every t > 0, we have

. 2e
lim_o /D (y)dy =0 (3.9)
when (a« — B) > —%and (a—b) > —%.
We next estimate the integral
M
(e)
f D, () dy.
2ve
By (3.7), we have
M
f D) dy = CopUs +U,
2ve
where
M M
U= [ @)y @)y ay, U= [ @) RGOy
2e 2e

for (a —b) > —%, + —1
The integral U, is estimated by (3.7) and |z%*? J,_,, (z)| < C, z>0forz>0for (a —b) = —%. We have
U,l <Ce [y ?dy <C (3.10)
for (a — B) > —% , # —land(a—b) = —% . Let t > 0 be fixed, and let € > 0 be sufficiently small and M be sufficiently

large so that 2ve < % < M . We divide the integral as follow :

1/t M
G={ [+ [ @ e @) R OYay =03+ 02, Gsa),
2v€ 1/t
Bythe fact/,_, (z) = 0(z% %) (z—-0) fora—b+ —1,-2,....,
we have
1/t
wlsc [ @reeyay
2Ve
1/t
Cf (ty)*2ey3dy <Ct?e ,(a—b > 3/2),
0
1/t
<4 C f t?eytdy <Ctle (Ilog tl+ log(l/e)) (a—b= 3/2)
2Ve
C f(ty)za ey 3dy <Ct*@e? ((a —-b) < 3/2)
2Ve
for (a — b) > —% .= —1land(a—b) = —-1,-2...... - It follows from the fact that zP*7 J,_;(z) = 0(1) (z — o) that
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[ee]

Uzl <¢C fey‘3dy <Ct?’e€.
1/t
Therefore, we have

lim,_ liMy_. U, =0 (3.11)

1

for (a — B) > —% , # =1 and (e — B) > -3

We turn to estimating U;. We first deal with the case 2ve < % < M and divide the integral:

1/t M
=1 [+ [ e, @)y ay= v+ 2 Gan))
2+€ 1/t
By the factJ,_, (z) = 0(z% %) (z—->0)fora—b # —1,-2,......., we have

1/t

Uil <c¢ f (ty)**y~tdy.
0

Thus if (a — b) > —%, then |U}| < C. Let us evaluate U? . The function satisfies
d

iz 27 @)= -z ]114(2).

This and integration by parts leads to

M
d
U12 — (_t—Za—4b) fy—Za—4b E ((ty)a+3b ]—a—3b(ty)) dy

1/t
— (_t—Za—4b) [y—Za—4b (ty)a+3b ]—a—3b (ty)]llw/t
r d
— (_t—Za—4b) f(t}’)a+3b ]—a—3b (ty) E (y—Za—4b) dy
1/t
= U2+ U}? (say) .
The first term UZ" = —(¢M)~@+D) J_ . (EM) + J_q_s, (1) satisfies U2 < Csince vz J, (z) = 0 (1) (z - o) and

1 < tM. The second term
M

1
Uit = (20— 4b) - f y2 (ty)**P J_qsp (ty) dy
1/t
is evaluated as follows:

uf?| <cet fy‘z dy <C.
1/t
Thus, we have |[UZ| < C and then |U;| < C inthe case 2ve < % < M. Inthe case% < 2+/e, we have |U;| < C in the same
way as in the estimation of U2, and in the case M < % , we also have |U;| < C in the same way as in the estimation of U{.
Therefore, these and (3.10) imply
M
|f2\/th(E)(Y) dy| <C (3.12)
for (¢ =) > —3/2, # —1 and (a—b) > —=.
Combining (3.8) and (3.12), we have (l). The statement (1) is proved as follows : By (3.9) and (3.11), we have

€ 50+ M—oo €->0+ M-

lim lim BE(t) = Cp lim lim U, = C,yp f )P J,_, (ty) y~t xdy
0

1
Cap f Jo-s W u2du= Cypap
0
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o 1
for everyt > Owhen (¢ — B) > -3/2, # —1 and (a—b) > —%.We have used fo Joep W) uz du = T(a)/

1

(F(2a + b)V2) for (a — b) > -

Remarks:

(i) Fora = i+ = .B= i—g L a= %+§ b =i—§, all the results in this paper reduce to that of Yuichi Kanjn, A

transplantation theorem for the Hankel transform on the Hardy space, Tohuko Math. J. 57(2005), 231-246.
(ii)Results of Yuichi Kanjn are particular case of ours.
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