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CHARACTERIZATION OF HANKEL TYPE KERNELS

Abstract

In this paper we consider an expression involving the Bassel type function, the
Neumam function and the MacDonald function and discover various combinations of
these functions which are Fourier kernels or conjugate Fourier kernels. Also a large
number of integration formulae are established involving these kernels.
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1.Introduction

Many authors studied Fourier kernels and developed theory by using it. In [1] they consider the manner in which Fourier kernels
may be generated as solutions of ordinary differential equations. Following [5, 8] we have

(x) = x“" {sin(a ~B)E3,4(0)+cos(a —ﬁ)%(Ya_ﬂ (x)+% K., (x)ﬂ

Where J, (X) is the Bessel type function, Y, (X) is the Neumann type function and K, (X) is the MacDonald type function.
In this paper we follow a different line of thought. We inquire which expressions of the type

k(x)= NG [AJa_ﬂ (x)+ BY,_, (X)+CKa_ﬂ (X)] (A, B,C Being constants) are Fourier type kernels or
have conjugate kernels of the same form. In this manner we study some new Fourier type kernels and others which have simple
looking conjugate.We also establish a large number of integration formulae, involving the function k(x) and its conjugate.

Many of these formulae are believed unavailable in the literature. Throughout, we print out various known results as special cases
of our general results.

2. Preliminaries
We shall mention below a few known results and definitions from the theory of Mellin transforms, which will be needed later. All
such results can be found in [7].

A function F (S),S =C+it,—o<t<w,a<c<b, issaid to be the Mellin transform of f (x) if

F(s) :I £ (x)x"dx

Conversely we call
1 C+ioo
f (X) s
2ri %
~M[F ()]
the inverse Mellin transform of F (S) .
An important result in the theory of Mellin transform is the Panseval theorem: If F (S) and K (S) are the Mellin transforms of

the functions f (X) and k(x) respectively, then under appropriate conditions

1 C+ioo 0
— | K(s)F(1-s)x*ds=|k(xt)f(t)dt 2.1
LT kF s =i e
A direct consequence of the Parseval theorem is that if K (s)F (1-5) =G (s) 2.2)
where K (s),F (s), G(s) denote the Mellin transform of k (x), f (x) and g (x) respectively, then in suitable strip of the

s-plane, we have

k(xt) f(t)dt=g(x) (2.3)

O =38

Next, (2.3) implies (2.2), and we call g to be k -transform of f . If further the inversion formulae

h(xt)g(t)dt=f(x), (2.4)

~ O« 8

Involving the kernel h(x , holds, then K and h are said to be conjugate of each other. Also their Mellin transform satisfy the

functional equation
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K(s)H (1-s)=1

In some strip of the s-plane. If instead of (2.4), we have the inversion formula
Ik(xt)g(t)dt: f(x) (2.5)
0

along with (2.3), then K is said to be self conjugate or a Fourier kernel. Also its Mellin transform satisfies the equation
K(s)K(1-s)=1
Thus, If the equations (2.3) and (2.4) holds simultaneously, then we shall call k (X) and h(x) , conjugate kernels. If on the other

hand equations (2.3) and (2.5) hold, then k (X) is said to be a self conjugate kernels. If for suitable T |

k(xt) f(t)dt==f(t),

ot—38

then f is said to be an Eigen function of the operator K , corresponding to the eigenvalue *1 respectively. It should be noted that

if the operator K is Fourier kernel, then it has only these two eigenvalues.

3. The kernels
We consider the function

— o+
k(x)=x“[ AJ,_, (x)+BY,_, (x)+CK,_,(x)].
where A, B, C are real constants. We may assign appropriate values to these constants so that k (X) is either self conjugate or

has a conjugate of the same type. Our first task will be to determine those values of A, B,C . The technique we shall employ to
find those suitable values, consists of using results from Mellin transform theory. The crucial part of our procedure is to express
the function K (s) , the Mellin transform of k (X) , as a rational expression of Gamma functions.

Now, making use of Mellin transform of the functions X‘”'BJa_ﬁ (x). X‘“'BYa_ﬁ (x) and x**” K, s (x). [3], the Mellin

transform of k () is then given by

K(s):M[kl(x);s]
:%25_21“(05 +%]F(ﬁ +%){Asinn(ﬂ +%]— BCOSﬂ'(ﬂ +%)+C}

1
Where|a —ﬂ|—E< Res<1.
In order to consolidate the bracketed terms into a single term, an appropriate choice for the constants is that

A=cosOr,B =sinfr,C :Esin ar,

V4
where @ and @ are arbitrary. Then one can write after some simplification,
1
K(s):%z 21“(05 +§]r(ﬁ+§j3in%(2ﬁ—2e+2a+s)sin%(z(za +B)+20+2a-5s)

Now using the functional equation I'(z)T'(1-z) = 7 cosecrz And the duplication formula for I (22 ) , we obtain,

225‘11“(“ +Sjr(ﬁ +S]F(3 a+ ﬁ+S]F(a+3 ﬁ+5]
2 4)\2 4)\2 4 2 4

3 s Bon S|P _g.S 35,05
F(a+2ﬁ—A+4]F(a++A—4jF(2 Bl+4]r(20€+2ﬁ+51 4]

K(s)= (3.1)

2
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where |a—ﬂ|—%< Res<1, Alzé(9+a) and 81:%(9—3)-

Also the corresponding form of Kk (X) using the above values of A, B,C | is then
k(x)=M ‘1[K (s); x]

=x**’ [cos@n\]a_ﬂ (x)+sin0OxY,_;(x) +Zsin arK,_, (x)} (3.2)
V4
To determine the function h ( X) , the conjugate of k (X) , We consider the functional equation
H(s)K(1-s)=1

where H (s) and K () are the Mellin transform of h(x) andk (), respectively; hence

225‘1F(a+A1+S]F(3a+2ﬁ—Al—S]F(3a+ﬁ+ Bl+S]F(a+ﬁ— Bl—s]
H(S): 2 4 2 4 2 4 2 4 (3.3)

B_s 3s S\pfe, 5 83 _S
F(a+2 4]F(2a+2ﬁ 4]F(2+ﬁ 4]F(2a+2ﬁ 4)

Now in suitable strip of the s-plane, we have
h(x)=M ‘1[H (s); x],

which can be shown by complex integration to be the sum of two hyper geometric series, eventually giving us the conjugate of the
functionk (X) .In the next two sections, we shall explore situations giving rise to four special cases. These cases are of particular

interest since they lead to a simpler representation of the conjugate function h(x) . In cases h(x) coincides with k (X) , defining

a self conjugate kernel. First we shall discuss self conjugate kernels.

4. Self-Conjugate kernels:

Let O = %(a +3f) anda = %(305 +f).Then A 2%, B, = —%(a — ) and from (3.1) and (3.3), we have

3 S 3 S
22 Sa+p+=>Tla+= B+~
(2“ P 4j (“ 2’ 4]

K, (s)=H,(s)= (4.2)
3 S 3 S
where |a—ﬂ|—g< Res <1, and K, (s)K, (1-s)=1.
Then from (3.2)
K aif | o Vg T 2
() =x sm(a—ﬁ)EJa_ﬂ(x)+cos(a—ﬁ)5 Ya_ﬂ(x)+;Ka_ﬂ(x) (4.2)

and it defines a self-conjugate kernel , i.e. kl(X) is a Fourier kernel [1]. An interesting special case of the above kernel occurs

when o — f = i%,when kl(X) becomes [5],
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i[sin x—cosx+e‘*]

Jr

Further we shall establish various integration formulae involving the function k; (X) . These formulae are derived as a result of

suitable decomposition of the Mellin transform function K, (S) . For instance let us define a function F , by

1 F(a+3ﬁ+sj
F(s)=22" 23 4

F(Za +2ﬁ—2]

where S=C+Iit,—o0o<t<oo and 23 <C< 2(3a +4ﬁ) . Then from (4.1), we deduce that

K. (s)F(1-s)=F(s) (4.3)

Now since [3],

F(s)=M {%23“” x*” sin (% xzj;s} ,

T

1
where —4a —6 <Res<4a+2[ then due to the result (2.3),the functional equation (4.3) implies that, on Res = >

%waftzﬂ sin (%t2]k1 (xt)dt :%23“” x*’ sin (% XZ], (4.4)
T 0 T

o —B|<3.
1 3a+f 2B i 1.). : : ; ; ;
Hence —2 X7 8sIn EX is an Eigen function of the operator kl(X), corresponding to the eigenvalue 1. Letting
V4

1
(a—p)= 5 gives the special case

2 < - 1 2 - —xt - 1 2
— | sin| =t |({sinxt—cos xt+e™ ™ )dt =sin| =X 4.5
JE! (2 ]( re) (2 ] o)

Letting o — 8 =1 and 2 in (4.4), we obtain two more interesting special cases, which are

0

It‘(“ﬂ) sin (%tzl(xt)(mﬂ) 3, (xt)dt =x"“*"sin (% X? ) (4.6)

0

(See [4, P.19 (16)]), and
3

TS 1 2 (a+B) 2 3 . 1 2
—It 2sin Et (xt) Y, (xt)+—=K, (xt) |dt =x 2sin SX ) (4.7)
0

T
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Further if we define F by
1
—+s (3 S 3 S
F(s)=22 I'|=a+p+=|T'|a+=F+—|,
(§)=22r(Jarp g r(as3p+3)
5
where Re(s) > _E+ |a - ﬂ|, then from (4.1), we have

Kl(s)F(l_s):F(s),|a_ﬂ|_§<Re(s)<1 @9

And since,

then (4.8), due to (2.1), implies

jt%Ka_ﬂ(%ﬁ]kl(xt)dtzx%Ka_ﬂze],|a—ﬂ|<3 (4.9)
0 2 2

ivi i ion 2K [ Lx2 K
giving another Eigen function X ap EX of the operator 1(X).
2
Again letting o — 8 =1 and 2, We obtain special cases of (4.9), which are respectively
0 1., 1,
2 -t _EX
jt e2 J(xt)dt=xe z , [4p.19(8)] (4.10)
0
and

" 1 2 1
—!tZK1 (EtZ](YZ (xt) t— K, (xt)]dt =x’K, (E xzj (4.12)

In general, in order that f(x) should be an Eigen function of the operator k1 corresponding to the eigenvalue 1,

F(S),§:a+i§,the Mellin transform of f should be of the form
1
s— (3 S 3 S
F(s)=2 ?T'|—a+B+—|T'|a+=F+—|¥(S),
©)=2 [ Sasprr(asped )

where ‘P(S) =¥ (l— S) . The Eigen functions mentioned above in (4.4) and (4.9) are special cases when

Y(s)=

and when
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‘P(S) =1 respectively.
Now we define functions F and G by
s 3. s
2 Ta+—-p+-
[+30+3)

") F(ia+2ﬂ—ij

and
1 F(2a+ﬁ+2]
G(s)=2 s
I'2o0+=-p——
(“ 2’ 4]
Then from (4.1), we have the functional equation
K,(s)F(1-s)=G(s). (4.12)
Since,
F(s)=M X%Ja , (lxzj;s , —2(2a+3p) < Res<>
E+E 2 2
and
G(s)=M X%J3 ﬁ(lxzj;s ,—2(3a+2ﬁ)<Res<§,
EUH'E 2 2
hence due to the result (2.1), (4.12) implies the equation
It%Ja ; (itZ]kl(xt)dtzx%J3 ﬂ(ixz], |- B| <3. (4.13)
0 22 \2 22 \2

Next, K, is self-conjugate, therefore the inversion formula gives

1% 1. _ % 1.
!t ZJ%ME ! k, (xt)dt=x 2J§+§ﬂ X (4.14)

2

3 1 3 1

This establishes the pair XAJ o 3 (— ij , XAJ 3 p (E ij as Kk, -transforms of each other.

—+=p —a+—
2 2 2 2

Some special cases of (4.13), when a — 8 = 0,1 and 2, are respectively

Itsin (%tZ](YO (xt)+E K, (xt)]dt =sin (% xzj (4.15)

T
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jtzJ0 (%tzlJl(xt)dt :le(% xzj, 6, p.215(3)], (4.16)

0

and

!tcos(%tZ](Yz (xt)+%K2 (xt)] dt :cos(% xz)—(%xzjsin(% xzj (4.17)

Next, if we put

0= —%(305 +f) and a= %(305 + ) in (3.1) and (3.3), then

Satisfying the equation
K,(s)K,(1-5)=1|e —ﬂ|—%< Res<1.
Also from (3.2), we have
~ 8| 2
X =Mk (5] ﬂ{sm(a—ﬁ)g\la_ﬂ(x)+oos(a—ﬁ)7—21(Ya_ﬁ(x) -z Ka_ﬂ(x)ﬂ, 19
and it defines a self-conjugate kernel.
_ 1 _
Note that if @ — 8 = E, then we obtain

K, (X) =i(cosx—sin x+e’*),
T

An intersecting special case [5].

Various integration formulae, involving the functionk, (x) are given below, again as a result of different decompositions of the

function K, (s). First we define F by

Then

K,(s)F(1-s)=F(s). (4.19)
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Now,

2 1
F(s)=M —xzﬁcos(—xzj;s}, —2B<Res<2(2a+p).
(5)=M | Eoxcos p<Res<2(2u+ p)
The due to (2.1), the functional equation (4.19), on Res = % , implies that
00 28 1, 28 1.,
It cos Et k, (xt)dt =x** cos EX e =Bl <1 (4.20)
0

1
ie x°F COS(E ij is an Eigen function of the operator k, (x) defined by (4.18).A special case can be derived from (4.20) by

setting |a —ﬂ| = %

%Icos (%tzl(cos Xt —sin xt + e‘X‘)dt =C0S (% xzj (4.21)
T

It is intersecting to compare this result with (4.5).Another Eigen function of the kernel k,, (x) , can be obtained by letting

F(s)= 2;+SF(Q+EJF(E+E)
2 4 2 4

then,
K,(s)F(1-s)=F(s)
where
F(S):M{X%K?(%XZJ;S}, Res>|a—ﬁ|_%,
implies

It%Kﬂ (£t2]k2 (xt)dt :x””ﬂKﬂ (EXZ], o — B|<1. (4.22)
0 2 2 2 2
. 1 .
Letting a — =0 andE , (4.22) reduces to, respectively,

[, (%tZ](vo(xt)_%Ko(xt)]dt:_KO (%xj w29

0

and
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%It“*ﬂ K}/4 (%tzl(cos xt —sin xt —eX‘)dt = x**P K% (% XZ] (4.24)
T %o

As before, the Eigen functions f of the operator k2 , can be characterized, by expressing its Mellin transform as
F(s)-= r[%+%jr[§+%}y(s),
where ‘P(S) = ‘P(l—s) . Letting
Y(s)=1

and

1
B_S\o(a, 5 8)
F(a+2 4]F[2+ﬁ 4}

give us the Eigen functions mentioned above in (4.20) and (4.22) respectively. Finally, we define F and G by

Y(s)=

F(s)=2
a S
(540~
and
2 153
G(s)=2
F(a+ﬁ—]
2 4
then
K,(s)F(1-s)=G(s) (4.25)
where
F(s):M{x%J . ﬂ(lxzj;s}, —2ﬁ<Res<E
_Ea_E 2 2
and

G(s):M{x%J " 3 (%xzj;s}, —2a<Res<%.
. 1
Hence from (4.25), we obtain, on Res = >
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[t ﬂ(itzlkz(xt)dt Xy, (ixzj, (- p)<1 (4.26)
0 2" a\2 22P\2
and conversely,
wt%J Lie i (xt)dt =x2 1 1 427
I PR , (xt)dt =x 5 EX  (a=pB)>- (4.27)
0 2 2 2 2

1
Putting ot — 8 =0 and P in (4.26), we obtain respectively,

It%J_Za (%t2]k2 (xt)dt =x2J , (% XZ] (4.28)
0

and
jt%J5 1(itZ]kz(xt)dtzx%J 3(£x2] (4.29)
0 —EUH'E 2 —20£+Z 2

5. Conjugate kernels:
1 1 i ) .
If we put 0 = —E(a —p) and a=1+ E(a — ) in the equations (3.1) and (3.3), we obtain

225‘1F(a+sjr(3a +ﬁ+sjr(a+3ﬁ+s]
K, (s)= 2 4 2 4 2 4
F(Za +3ﬁ—8]1”(3a+ﬁ+S]F(SOHZﬁ—Z]

2 4 4 4 4 4
and
225‘1F(3a+ﬁ+S]F(3a+5ﬁ+slr(50€+3ﬁ—s]
2 4 4 4 4 4 4 4
HS(S): B s 3 S 3 S
Ne+-—|I'2a+_p—|T'| ca+2—--
2 4 2 4 2 4
So that

H,(s)K,(1-s)=1.

Then from (3.2), we have

o () = X7 {cos%(a )73,y (1) -sin (o~ ﬁ)ﬂ(vaﬁ (0)+2K,_, (x)ﬂ, 6.1)

/A

1
where |a - ﬂ| - E < Res <1. Itis now a simple matter to evaluate h3 (X) , which is the conjugate of k3 (X) and is given by
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hy (X)=M [ H,(s):x]

_ ot {cos%(a )70, () sin (- ﬁ)ﬂ(va_ﬂ (0-2K, (x)ﬂ, 62)

T

1
for | — B|— =< Res <1. Thus we have established a pair of conjugate kernels K, (X) andh, ( X). As a special case when
2 3

1
a — [ =% —, we have pairs of conjugate kernels,
2

i(cost+sint¢e‘*). (5.3)

NP

By employing the technique of the previous sections, we arrive at the following integration formulae involving the kernel k3 (X) .

Integrals involving h, (X) can easily be obtained by the inversion formulae (2.4). We believe that these are all new results.

Oo0(+ 1 o+ 1
J;t ﬂJ_(a_ﬂ)(Etzij(xt)dt:x ﬂJ“;/’(EXz]’ (a—pB)<2 (5.4)
2
wt“”’J L2 ) h (xt)dt =x* 3 1e -B)=-2 55
J; et| 2 h, (xt)dt = MZ’(Q )z (5.5)
2

If a—f=2n, n=0,12,---, then [4, p.56(1)], the equation (5.5) gives,

K 1 1
t) | =t* |J, (xt)dt=J | =x?|. 5.6
.!. n(z ] 2n(X) n(zx] ( )

If o —f =1, then from (5.4) and (5.5), we have respectively,

—! cos(%tZ](Yl(xt) +% Kl(xt)jdt ~Lin (% xzj : (5.7)

X
and
—!sin(%tﬂ(ﬂ(xt)—%Kl(xt)jdt:icos(%xzj (5.8)
Also,
T 2 1 2 2 . 1 2 1
It ﬂcos(—t ]k3(xt)dt =X ﬂsm(—x j —=<(a-p)<2 (5.9)
) 2 2 2

If a— =0, (5.9)gives, [4, p.38(40)],
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F 1, . (1,
Itcos =t* |3, (xt)dt =sin| =x (5.10)
0 2 2

It is also easy to establish that

s
0 22

jt3(”‘+’”K3 (% xzjdx, oo = pl<2, (5.11)
Lettinga — 8 =0, we have, [5, p.29 (10)],

© 1, (1.
J'te_(2 ]Jo(xt)dt:e ) (5.12)

1
Our last pair of conjugate kernels is obtained if we set @ =0 in (3.1) and (3.3). Then for |a - ﬂ| - 2 <Res<1,

K4(s):25_% F(a+;jf(ﬁ+;j

S s\’
F(Za +ﬁ+9—2jr(ﬁ—9+2j

and for 0 <Res<1, |a—ﬂ+29|<g,

1 F(oc+9+sjl“(a+2ﬁ—9—sj
= 2 2
H,(s)=2 2 5 5

So that
H, (s)K,(1-s)=1
Thus in an appropriate strip of the s-plane, from (3.2),
k, (x)=M7[K,(s):x]
= x**P [cos@nJa_ﬂ (x)-sinoxY,_, (x)] (5.13)

Also, using complex integration, we can find that [3, p.353 (43)],

h, (X)=M*[H,(s):x]
11 1 2 1a
= ‘/EGB [ZX |bll,b2,b3 } (5.14)
where & =b =a+6, b, =, b, =ca,and G being the Meijer’s G -function.
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Note that alternatively, [3, p.379],

x*P [1

o—p+20
1
h, (x)= = F|11+6,3 0,—=x? 5.15
)= o) e s 5 0) zx} 12( HO3ax s 4X] 19

1
It is now simple to see that if @ = E then we obtain

Ky (X)=x*""Y, 5 (x) (5.16)
and [3, p.380]
h,(x)=x"""H,_;(x) (5.17)

a pair of well-known conjugate kernels, Ha—ﬂ being Struve’s function [7, p.215(2)].

Finally we shall list a few integration formulae involving the operator k4 (X) . Integrals involving h4 (X)

can be written by the usual inversion formulae of the type (2.4).

r(-0)

where —1< 0 <0 and H isthe Heaviside function.

[0 (O () St =5 (1) X H (1-X), 3050, (529
0

1
If @ = _E , then [6, p.272(4)],

(xt)'“ﬂ Jop ()Y, (xt)dt :—\/zxzﬂ (l— xz)_}/2 H(1-x) (5.19)

O sy 8

T
Also,
o D3a+f+0 ~(3a+p+6)
3a+p+6 _ 2a 2
!t Jo(t)k4(xt)dt—mx (1-x*) H(1-x),
a-p+60<0,0=>-1. (5.20)
Let @ =—1, we get [4, p.48(7)],
Tt”“ﬂJ (1)3,_, (xt)dt 2 e (1-x) " H (1-x) (5.20)
! P Tes I'(a+38)
We also have,
27 tha (tz—l)e_lk (xt)dt =x**"-J (x), 0<O<(a+2pB) (5.22)
F(@) ) 4 a—-p+0
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1
If 0= E then [5, p.102(29)],

\E freer (2 -2) Ny, (xt)dt =x 3, (x) (5.23)
n 1

Finally,

0 t2a+26

ﬁk4 (Xt)dt S R Ka—ﬂ (aX),—1< O<a +2ﬂ (5.24)

o a +t

and generally, [9,p.424(2)],

2a+29

_(_1)m o+f 1 d a-p+20
a +t o o\m+l 4(Xt)dt_m!2m X ada [a Ka—ﬂ (aX)] (525)

O'—-S

Now letting @ =0 and % (5.24) yields respectively [5, p.23(12)], [4, p.99(15)],

© t3a+6

e J,_s(xt)dt=a""K,_; (ax) (5.26)
0
0 t5a+3ﬂ

Y Y, ;(xt)dt=a**"K, _, (ax) (5.27)

0

Remark: All the results, for which we have not given references from the literature, appear to be new. our method, therefore has
yielded a large number of new integration formulae.

6. Applications

Since the kernels in this paper are also solutions of a Fourth order ordinary differential equation [1], it is expected that our results
will find applications in situations which involve such differential equations. One such situation was encountered in [1]. We point
out some more below.

If we consider the problem of finding solutions of

4 2
%+;2—0|n0<x<oot>0 (6.1)
X
or of
o 10 &
—+——| U+—=0in0<r<ow,t>0 (6.2)
or: ror ot
which solutions are bounded at infinity, and which satisfy the conditions
ou ou
hU=—=0or|u=—=0]atX=0o0r(r=0 6.3
® OX ( or ] ( ) (63)
or the conditions
_0u u 0
(”)87:§:0 or (VZUZEVZUZOJ at x=0 or(l’zO) (6.4)
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0 . —_ . .
respectively, where Vi= 6_2+_8_ ,then we encounter the kernels introduced in this paper. If these solutions are subject to the
r ror

initial conditions

u=g, (g) (6.52)
and
ou
ki 6.5b
= = 9(¢) (6.5b)
att=0in 0<¢& <o, where & is either X or r depending upon whether we are dealing with (6.1) or equation (6.2) then the
solution is
t B(4) .
=|lk A)cos(A%’t)+——2sin(A%t) |dA 6.6
g Jeos(20)+ 2 sin(2#) [ 01 o9
where
g,(&)=[A(2)k(2&)dA (6.7)
0
and
9,(£)=[AB(2)k(2&)dA (6.8)
0
where K is an appropriate kernel. If K is self conjugate then the solution of equations (6.7) and (6.8) is
I g, (£)k(2€)de (6.9)
== I g,(£)k(A&)de (6.10)

and substitution in equation (6.6) gives U . The following cases should be noted:

1 ou N .
1. If o — B =— and the conditions are U = 6_ =0 at the origin, then equation (6.6) gives deflection of a vibrating semi-
X

infinite elastic rod which is clamped at one end (the origin) and is subject to the initial conditions (6.5). In this case
1
k=k (X)T(
T
U o

1
2. fa-p= E and the conditions are 8_2 = F =0 at the origin, then equation (6.6) gives deflection of a vibrating
X X

semi-infinite elastic rod which is free at one end (the origin) and is subject to the initial conditions (6.5). In this case

Sin X—COS X + e‘x) which is self conjugate.

COSX—SIiN X + e‘x) which is self conjugate.

k:kz(x):%(

ou
3. If a— B =0and the conditions are U = 6_ =0 at r =0, then equation (6.6) gives deflection of a (symmetrically)
r

vibrating infinite elastic plate which is clamped at the origin and is subject to the initial conditions (6.5).
In this case

k:kl\/(Fr):Yo(r)+%ko(r) 611

so that equations (6.7) and (6.8) become

NEAE f% (A¢)d (612)
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and
VB0, (£)= [VIB(2)k (1¢)d (613)

since k1 is self conjugate, these equations are easily inverted and substitution gives U .
It is interesting to note that in case (iii), in the case of a vibrating infinite plate clamped at the origin, the vertical force

exerted by the clamp on the plate is given by
Iimzz—g(vzu)rde :8]22,2 A(A)cos(lzt)+msin(ﬂ,2t) dA (6.14)
0 A

r—0 5 or
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