

ON 25- CLOSED SETS, 25-CONTINUITY AND a-2-ALMOST COMPACTNESS FOR CRISP SUBSETS IN A FUZZY TOPOLOGICAL SPACE

Authors & Affiliation:

ANJANA BHATTACHARYYA

DEPARTMENT OF MATHEMATICS

VICTORIA INSTITUTION (COLLEGE)

78 B, A.P.C. ROAD, KOLKATA – 700009 INDIA

Correspondence To:

ANJANA BHATTAC HARY YA

Keywords:

 α -shading, α - δ_{g} -almost compact set, δ_{g}^{α} -closed set, δ_{g}^{α} -continuity

© 2014. The Authors. Published under Caribbean Journal of Science and Technology

ISSN 0799-3757

http://caribjscitech.com/

ABSTRACT

This paper is a continuation of the study of α - \ddot{o}_{p} -almost compactness for crisp subsets in a fuzzy topological space, initiated in [2] by using α -shading of Gantner et al [6]. Here we introduce and study a new class of ordinary subsets, called \ddot{o}_{p} -closed sets, which inherit α - \ddot{o}_{p} -almost compactness of a space X (endowed with a fuzzy topology). Again a new type of function, called \ddot{o}_{p} -continuous function, between two fuzzy topological spaces is introduced and shown that α - \ddot{o}_{p} -almost compactness of crisp subsets remains invariant under this function.

INTRODUCTION

The concept of \mathfrak{A} -shading in a fuzzy topological space was introduced by Gantner et al. [6]. This paved a new idea for generalizing different types of compactness to fuzzy perspective. Using this idea, in [2] we have introduced and studied \mathfrak{A} - $\mathfrak{A}_{\mathfrak{P}}$ -almost compactness for crisp subsets (i.e., an ordinary subset) in a fuzzy topological space.

Here in this paper a class of new concepts has been introduced with the related study. A class of crisp subsets, called ∂_{g}^{α} -closed subsets, is introduced and established that $\alpha_{-}\partial_{g}$ -almost compactness of a space is inherited by such subsets. We have obtained a necessary condition for $\alpha_{-}\partial_{g}$ -almost compactness of crisp subsets via such subsets. Finally, we define two new types of functions under which $\alpha_{-}\partial_{g}$ -almost compactness and ∂_{g}^{α} -closeness remain invariant respectively.

Throughout the paper, by an fts X, we denote a fuzzy topological space (X, \mathbb{F}) in the sense of Chang [4]. By a crisp subset of an fis X, we mean an ordinary subset A of X, i.e., $A \subseteq X$, where the underlying structure on Xis a fuzzy topology whereas a fuzzy set A in an fis Z denotes, as usual, a function from X to the closed interval I = [0, 1], of the real line, i.e., $A \in I^{\mathcal{X}}$ [8]. For a fuzzy set A in an fts \mathcal{X} , clA and intA will respectively stand for the fuzzy closure and interior of A in (X, z) [7]. The support of a fuzzy set A in X will be denoted by suppA and is defined by suppA = $[x \in X : A(x) \neq 0]$. A fuzzy point [7] in X with the singleton support $\{x\} \subseteq X$ and the value α ($0 \leq \alpha \leq 1$) will be denoted by π_{α} . For two fuzzy sets A and B in X, we write $A \leq B$ if $A(x) \leq B(x)$, for all $x \in X$ while we write AqB if A is quasi coincident (q-coincident, for short) with \mathbb{P} [7], i.e., if there exists $x \in \mathbb{X}$ such that $A(x) + \mathbb{P}(x) > 1$; the negation of these two statements are written as A 📫 🖉 and A 🖗 🖉 respectively. A fuzzy set 🗳 is called a quasi-neighbourhood (q-nbd, for short) of a fuzzy set A if there is a fuzzy open set U in X such that AqU S B. If, in addition, B is fuzzy open, then **a** is called a fuzzy open q-nbd of **A**. A fuzzy nbd [7] **A** of a fuzzy point **x**_x in an fts **X** is define in the usual way, i.e., whenever for some fuzzy open set U in $X, x_a \leq U \leq A$; A is a fuzzy open nbd of x_a if A is fuzzy open, in addition. A fuzzy set A in X is called a fuzzy regular open set if int clA = A[1]. A fuzzy point x_{a} is said to be a fuzzy δ -cluster point of a fuzzy set A in an fts X if every fuzzy regular open q-nbd U of 🐾 is q-coincident with A [5]. The union of all fuzzy 8-cluster points of A is called the fuzzy 8-closure of A and is denote by act.

1. SOME WELL KNOWN DEFINITIONS

Let us now recall some definitions from [3] for ready references.

DEFINITION 1.1. A fuzzy set *A* in an fis X is said to be fuzzy δ -preopen if $A \leq int(\delta c l A)$.

The complement of a fuzzy 4-preopen set is called fuzzy 4-preclosed.

DEFINITION 1.2. A fuzzy set A in an fts X is called a fuzzy 0 -pre-q-nbd of a fuzzy point x_{α} in X if there exists a fuzzy 0 -preopen set V in X such that $x_{\alpha}qV \leq A$.

DEF INITION 1.3. A fuzzy point \mathcal{X}_{π} in an fts \mathcal{X} is called a fuzzy \mathcal{Z} -precluster point of a fuzzy set \mathcal{A} in \mathcal{X} if every fuzzy \mathcal{Z} -pre-q-nbd of \mathcal{X}_{α} is q-coincident with \mathcal{A} .

The union of all fuzzy \ddot{o} -precluster points of A is called the fuzzy \ddot{o} -preclosure of A and will be denoted by $\ddot{o} - pcA$.

Next we recall the definition of *c*-shading from [6].

DEFINITION 1.4. Let X be an fts, and A be a crisp subset of X. A collection U of fuzzy sets in X is called an x-shading (where 0 < x < 1) of A if for each $x \in A$, there is $U_x \in U$ such that $U_x(x) > \alpha$. Taking A = X, we arrive at the definition of x-shading of an fts X, as proposed by Gantner et.al [6]. If the members of an x-shading U of A (or of X) are fuzzy δ -preopen sets in X, then U is called a fuzzy δ -preopen x-shading of A (resp. of X).

DEFINITION 1.5 [2]. Let X be an fits and A, a crisp subset of X. A is said to be $\alpha - \delta_p$ -almost compact if each fuzzy δ -preopen α -shading U of A has a finite δ_p -proximate α -subshading, i.e., there exists a finite subcollection U₀ of U such that $\{\delta - pcW : U \in U_0\}$ is again an α -shading of A. If, in particular, A = X, then X is called an $\alpha - \delta_p$ -almost compact space.

2. de-CLOSED SET AND ITS APPLICATIONS

In this section, we introduce, as follows, a class of crisp sets in an fts.

DEFINITION 2.1. Let (X, τ) be an fts and $A \subseteq X$. A point $x \in X$ is said to be a δ_p^{α} -limit point of A if for every fuzzy δ -preopen set U in X with $U(x) > \alpha$, there exists $y \in A \setminus \{x\}$ such that $(\delta - pcW)(y) > \alpha$. The set of all δ_p^{α} -limit points of A will be denoted by $[A]_{\delta_p^{\alpha}}^{\alpha}$.

The ∂_{p}^{α} -closure of **A**, to be denoted by $\partial_{p}^{\alpha} - clA$, is defined by $\partial_{p}^{\alpha} - clA = A \cup [A]_{\partial_{p}}^{\alpha}$.

DEFINITION 2.2. A crisp subset A of an fts X is said to be \mathscr{D}_{p}^{∞} -closed if it contains all its \mathscr{D}_{p}^{∞} -limit points. Any subset B of X is called \mathscr{D}_{p}^{∞} -open if $X \setminus B$ is \mathscr{D}_{p}^{∞} -closed.

REMARK 2.3. For any $A \subseteq X$, it is clear that $A \subseteq \delta_p^{\alpha} - cIA$, and $\delta_p^{\alpha} - cIA = A$ iff $[A]_{\delta_p}^{\alpha} \subseteq A$. Then in view of Definition 2.1, it follows that A is δ_p^{α} -closed iff $\delta_p^{\alpha} - cIA = A$. It is also clear that $A \subseteq B \subseteq X \Rightarrow [A]_{\delta_p}^{\alpha} \subseteq [B]_{\delta_p}^{\alpha}$.

THEOREM 2.4. A $\mathcal{C}_{\mathcal{C}}^{\mathfrak{s}}$ -closed subset \mathcal{A} of an \mathfrak{A} - $\mathcal{C}_{\mathfrak{s}}$ -almost compact space X is \mathfrak{A} - $\mathcal{C}_{\mathfrak{s}}$ -almost compact.

PROOF. Let $A(\subseteq X)$ be d_p^{α} -closed in X. Then for any $x \in A$, there is a fuzzy \hat{a} -preopen set U_x in X such that $U_{\alpha}(x) > \alpha$, and $(\hat{a} - pclu_x)(y) \le \alpha$, for every $y \in A$. Consider the collection $U = \{U_x : x \in A\}$. Now to prove that A is $\hat{a} - \hat{a}_p$ -almost compact, consider a fuzzy \hat{a} -preopen α -shading V of A. Clearly $U \cup V$ is a fuzzy \hat{a} -preopen α -shading of X. Since X is $\alpha - \hat{a}_p$ -almost compact, there exists a finite subcollection $\{V_1, V_2, \dots, V_n\}$ of $U \cup V$ such that for every $t \in X$, there exists V_t ($1 \le t \le n$) such that $(\hat{a} - pclV_t)(t) > \alpha$. For every member U_x of U, $(\hat{a} - pclU_x)(y) \le \alpha$, for every $y \in A$. So if this subcollection contains any member of U, we omit it and hence we get the result.

To achieve the converse of Theorem 2.4, we define the following :

DEFINITION 2.5. An fis (X, τ) is said to be \mathfrak{A} - $\mathfrak{S}_{\mathfrak{p}}$ -Urysohn if for any two distinct points x, y of X, there exists a fuzzy open set U and a fuzzy \mathfrak{S} -preopen set V in X with $U(x) > \alpha$, $V(y) > \alpha$ and $\min((\mathfrak{S} - pclU)(z), (\mathfrak{S} - pclV)(z)) \le \alpha$, for each $z \in X$.

THEOREM 2.6. An \mathfrak{A}_{a} -almost compact set in an \mathfrak{A}_{a} -Urysohn space \mathfrak{X} is $\mathfrak{A}_{a}^{\bullet}$ -closed.

PROOF. Let A be $\mathfrak{A} - \mathfrak{C}_p$ -almost compact and $x \in X \setminus A$. Then for each $y \in A, x \notin y$. By $\mathfrak{A} - \mathfrak{C}_p$ -Urysohn property of X, there exist a fuzzy open set U_y and a fuzzy \mathfrak{F} -preopen set V_y in X such that $U_y(x) > \alpha$, $V_y(y) > \alpha$ and $\min\left((\mathfrak{G} - pclU_y)(x), (\mathfrak{C} - pclV_y)(x)\right) \le \alpha$, for all $x \in X \dots (1)$.

Then $U = \{V_y : y \in A\}$ is a fuzzy ϑ -preopen \mathfrak{A} -shading of A and so by $\mathfrak{A} \cdot \vartheta_y$ -almost compactness of A, there are finitely many points y_1, y_2, \dots, y_n in A such that $U_0 = \{\vartheta - pclV_{y_k}, \dots, \vartheta - pclV_{y_n}\}$ is again an \mathfrak{A} -shading of A. Now $U = U_{y_k} \cap \dots \cap U_{y_n}$ being a fuzzy open set is a fuzzy ϑ -preopen set in X such that $U(x) > \alpha$. In order to show A to be ϑ_y^2 -closed, it now suffices to show that $(\vartheta - pclU)(y) \leq \alpha$, for each $y \in A$. In fact, if for some $z \in A$, we assume $(\vartheta - pclU)(z) > \alpha$, then as $z \in A$, we have $(\vartheta - pclV_{y_k})(z) > \alpha$, for some $k (1 \leq k \leq n)$. Also $(\vartheta - pclU_{y_k})(z) > \alpha$. Hence $\min\left((\vartheta - pclU_{y_k})(z), (\vartheta - pclV_{y_k})(z)\right) > \alpha$, contradicting (1).

COROLLARY 2.7. In an \mathfrak{A} - \mathfrak{A}_{p} -almost compact, \mathfrak{A} - \mathfrak{A}_{p} -Urysohn space X, a subset A of X is \mathfrak{A} - \mathfrak{A}_{p} -almost compactiff it is \mathfrak{A}_{p}^{-1} -closed.

THEOREM 2.8. In an . almost compact space X, every cover of X by a°_{\circ} -open sets has a finite subcover.

PROOF. Let $U = \{U_t : t \in A\}$ be a cover of X by ∂_{p}^{α} -open sets. Then for each $x \in X$, there exists $U_x \in U$ such that $x \in U_x$. Now, as $X \setminus U_x$ is ∂_{p}^{α} -closed, there exists a fuzzy δ -preopen set V_x in X such that $V_x(x) > \alpha$, and $(\delta - pclV_x)(y) \le \alpha$, for each $y \in X \setminus U_x \dots$ (1). Then $\{V_x : x \in X\}$ forms a fuzzy δ -preopen α -shading of the x- ∂_y -almost compact space X. Thus there exists a finite subset $\{x_1, x_2, \dots, x_n\}$ of X such that $\{\delta - pclV_{x_1} : t = 1, 2, \dots, n\}$ is an α -shading of $X \dots$ (2).

We claim that $\{U_{x_1}, ..., U_{x_n}\}$ is a finite subcover of U. If not, then there exists $y \in X \setminus \bigcup_{i=1}^n U_{x_i} = \bigcap_{i=1}^n (X \setminus U_{x_i})$. Then by (1), $(\delta - pciV_{x_i})(y) \leq \alpha$ for t = 1, 2, ..., n and so $(\bigcup_{i=1}^n \delta - pciV_{x_i})(y) \leq \alpha$, contradicting (2).

THEOREM 2.9. Let (X, τ) be an fts. If X is $\alpha - \delta_{p}$ -almost compact, then every collection of δ_{p}^{α} -closed sets in X with finite intersection property has non empty intersection.

PROOF. Let $F = \{F_i : i \in A\}$ be a collection of $\mathscr{A}_{\mathcal{F}}^{\alpha}$ -closed sets in an \mathbb{W} - $\mathscr{A}_{\mathcal{F}}^{\alpha}$ -almost compact space X having finite intersection property. If possible, let $\bigcap_{t \in A} F_t = \emptyset$. Then $X \setminus \bigcap_{t \in A} F_t = \bigcup_{t \in A} (X \setminus F_t) = X \Rightarrow U = \{X \setminus F_i : t \in A\}$ is an $\mathscr{A}_{\mathcal{F}}^{\alpha}$ -open cover of X. Then by Theorem 2.8, there is a finite subset Λ_0 of Λ such that $\bigcup_{i \in A_{\mathcal{F}}} (X \setminus F_i) = X \Rightarrow \bigcap_{i \in A_{\mathcal{F}}} F_i = \langle \phi, a \text{ contradiction.} \rangle$

3.

In this section we finally introduce a class of functions under which \mathbf{a} - $\mathbf{a}_{\mathbf{p}}$ -almost compactness remains invariant.

DEFINITION 3.1. Let X, Y be fis's. A function $f : X \to Y$ is said to be $\mathscr{Z}_{\mathcal{F}}^{\alpha}$ -continuous if for each point $x \in X$ and each fuzzy \mathcal{C} -preopen set V in Y with $V(f(x)) > \alpha$, there is a fuzzy \mathcal{C} -preopen set U in X with $U(x) > \alpha$ such that $\mathscr{I} - pcUU \leq f^{-1}(\mathscr{I} - pcUV)$.

THEOREM 3.2. If $f \colon X \to Y$ is fuzzy $\mathcal{X}_{\mathcal{Y}}^{e}$ -continuous (where X, Y are, as usual, fts's), then the following are true :

- (a) $f([A]_{\mathcal{S}_{o}}) \subseteq [f(A)]_{\mathcal{S}_{o}}^{\mathcal{S}}$, for every $A \subseteq \mathcal{X}$.
- (b) $[f^{-1}(A)]^{\alpha}_{\delta_{\alpha}} \subseteq f^{-1}([A]^{\alpha}_{\delta_{\alpha}})$, for every $A \subseteq Y$.
- (c) For each $\mathcal{Z}_{\mathfrak{p}}^{\mathfrak{a}}$ -closed set A in Y, $f^{-1}(A)$ is $\mathcal{Z}_{\mathfrak{p}}^{\mathfrak{a}}$ -closed in X.
- (d) For each $\mathcal{E}_{\varphi}^{\alpha}$ -open set A in Y, $f^{-1}(A)$ is $\mathcal{E}_{\varphi}^{\alpha}$ -open in X.

PROOF.(a) Let $x \in [A]_{\delta_p}^{\alpha}$ and U be any fuzzy δ -preopen set in Y with $U(f(x)) > \alpha$. Then there is a fuzzy δ -preopen set V in X with $V(x) > \alpha$ and $\delta - pclV \leq f^{-1}(\delta - pclU)$. Now $x \in [A]_{\delta_p}^{\alpha}$ and V is a fuzzy δ -preopen set in X with $V(x) > \alpha \Rightarrow \delta - pclV(x_0) > \alpha$ for some $x_0 \in A \setminus \{x_0\} \Rightarrow \alpha < \delta - pclV(x_0) \leq (f^{-1}(\delta - pclU))(x_0) = (\delta - pclU)f(x_0)$ where $f(x_0) \in f(A) \setminus \{f(x)\} \Rightarrow f(x) \in [f(A)]_{\delta_p}^{\alpha}$. Thus (a) follows.

(b) By (a),
$$f\left([f^{-1}(A)]_{\delta_{g}}^{\alpha}\right) \subseteq [ff^{-1}(A)]_{\delta_{g}}^{\alpha} \subseteq [A]_{\delta_{g}}^{\alpha} \Rightarrow [f^{-1}(A)]_{\delta_{g}}^{\alpha} \subseteq f^{-1}([A]_{\delta_{g}}^{\alpha}).$$

(c) We have $[A]_{\delta_{g}}^{\alpha} = A$. By (b),
 $[f^{-1}(A)]_{\delta_{g}}^{\alpha} \subseteq f^{-1}\left([A]_{\delta_{g}}^{\alpha}\right) = f^{-1}(A) \Rightarrow [f^{-1}(A)]_{\delta_{g}}^{\alpha} = f^{-1}(A) \Rightarrow f^{-1}(A)$ is δ_{g}^{α} -closed in X .

(d) Follows from (c).

THEOREM 3.3. Let X, Y be fis's and $f : X \to Y$ be fuzzy δ_{g}^{α} -continuous. If $A (\subseteq X)$ is $\alpha - \delta_{g}$ -almost compact, then so is f(A) in Y.

PROOF. Let $V = \{V_i : i \in A\}$ be a fuzzy δ -preopen α -shading of f(A), where A is α - δ_{p} -almost compact set in X. For each $x \in A$, $f(x) \in f(A)$ and so there exists $V_x \in V$ such that $V_x(f(x)) > \alpha$. By fuzzy δ_y^{α} -continuity of f, there exists a fuzzy δ -preopen set U_x in X such that $U_x(x) > u$ and $f(\delta - pclU_x) \leq \delta - pclV_x$. Then $\{U_x : x \in X\}$ is a fuzzy δ -preopen α -shading of A. By α - δ_p -almost compactness of A, there exist finitely many points a_1, a_2, \dots, a_n in A such that $\{\delta - pclU_{\alpha_1} : i = 1, 2, \dots, n\}$ is again an α -shading of A. We claim that $\{\delta - pclV_{\alpha_1} : i = 1, 2, \dots, n\}$ is an u-shading of f(A). Infact, $y \in f(A) \Rightarrow$ there exists $x \in A$ such that y = f(x). Now there is a U_{α_j} (for some $f, 1 \leq j \leq n$) such that $\{\delta - pclU_{\alpha_j}\}(x) > \alpha$ and hence $(\delta - pclV_{\alpha_j})(y) \geq f(\delta - pclU_{\alpha_j})(y) \geq \delta - pclU_{\alpha_j}(x) > u$. We now define a function under which $\mathcal{J}_{a}^{\mathcal{G}}$ -closedness of a set remains invariant.

DEFINITION 3.4. Let X, Y be fis's. A function $f : X \to Y$ is said to be fuzzy \mathcal{C} -preopen if f(A) is fuzzy \mathcal{C} -preopen in Y whenever A is fuzzy \mathcal{C} -preopen in X.

REMARK 3.5. For a fuzzy δ -preopen function $f : X \to Y$, every fuzzy δ -preclosed set A in X, f(A) is fuzzy δ -preclosed in Y.

THEOREM 3.6. If $f:(X,\tau) \to (Y,\tau_1)$ is a bijective fuzzy δ -preopen function, then the image of a δ_{p}^{α} -closed set in (X,τ) is δ_{p}^{α} -closed in (Y,τ_1) .

PROOF. Let $A \subseteq X$ be a \mathscr{G}_{y}^{α} -closed set in (X, τ) and let $y \in Y \setminus f(A)$. Then there exists a unique $z \in X$ such that f(z) = y. As $y \notin f(A), z \notin A$. Now, A being \mathscr{G}_{S}^{α} -closed in X, there exists a fuzzy \mathscr{G}_{S} -preopen set V in X such that V(z) > u and $\mathscr{G} = prlV(p) \leq u$, for each $p \in A \dots (1)$.

As f is fuzzy δ -preopen, f(V) is a fuzzy δ -preopen set in Y, and also $(f(V))(y) = V(z) > \alpha$. Let $z \in f(A)$. Then there is a unique $t_0 \in A$ such that $f(t_0) = z$. As f is bijective and fuzzy δ -preopen, by Remark 3.5, $\delta - pcif(V) \leq f(\delta - pciV)$ Then $(\delta - pcif(V))(z) \leq f(\delta - pciV)(z) = \delta - pciV(z_0) \leq \alpha$, by (1). Thus Y is not a δ_g^{α} -limit point of f(A). Hence the result.

From Theorem 3.2(c) and Theorem 3.6, it follows that

COROLLARY 3.7. Let $f : X \to Y$ be a fuzzy δ_p^{α} -continuous, bijective, δ -preopen function. Then A is δ_p^{α} -closed in Y iff $f^{-1}(A)$ is δ_p^{α} -closed in X.

REFERENCES

- 1. Azad, K.K. On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- Bhattacharyya, Anjana ; a-c^{*}_g-almost compactness for crisp subsets in a fuzzy topological space, International Journal of Advanced Research, Vol. 1, Issue 8 (2013), 498-507.
- 3. Bhattacharyya, Anjana and Mukherjee, M.N. ; On fuzzy **3**-almost continuous and **3**^{*} -almost continuous functions, J. Tripura Math. Soc. 2 (2000), 45-57.
- 4. Chang, C.L.; Fuzzy topological spaces, Jour. Math. Anal. Appl. 24 (1968), 182-190.
- Ganguly, S. and Saha, S.; A note on ^a-continuity and ^a-connected sets in fuzzy set theory, Simon Stevin 62 (1988), 127-141.
- 6. Gantner, T.E., Steinlage, R.C. and Warren, R.H.; Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547-562.
- Pu, Pao Ming and Liu, Ying Ming ; Fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599.
- 8. Zadeh, L.A.; Fuzzy sets, Inform. and Control, 8 (1965), 338-353.