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Abstract:  

The problem of vibrations of an infinitely long poroelastic composite hollow cylinder 

is solved by employing Biot’s theory of wave propagation in poroelastic media.  A 

poroelastic composite hollow cylinder consists of two concentric poroelastic 

cylindrical layers both of which are made of different poroelastic materials with each 

poroelastic material as homogeneous and isotropic. The frequency equation of 

vibrations of poroelastic composite hollow cylinder is obtained along with some 

particular cases.  Non-dimensional Phase velocity is computed as a function of wave 

number. The results are presented graphically for two types of poroelastic composite 

cylinders and then discussed. The vibrations of poroelastic composite hollow cylinder 

related to core and casing for  pervious surface are uncoupled when the solid in casing 

is rigid. 
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1. Introduction 

Gazis (1959) studied  the propagation of free harmonic waves in elastic hollow circular cylinder. McNiven et al. 

(1963) discussed propagation of axially symmetric waves in composite elastic rods. Cui et al. (1997) and 

Abousleiman and Cui (1998) presented poroelastic solutions in an inclined borehole  and transversely isotropic well-

bore cylinders. Ahmed shah and Tajuddin (2009) discussed axially symmetric vibrations of finite composite 

poroelastic cylinders. Malla Reddy and Tajuddin (2010) studied axially symmetric vibrations of composite 

poroelastic cylinders. Flexural wave propagation in coated poroelastic cylinders is presented by Ahmed shah (2011). 

Tajuddin (2011) et al. discussed axial shear vibrations in poroelastic composite cylinder. Shanker et. al. (2012) 

studied radial vibrations in an infinitely long poroelastic coated cylinder. 

In the present analysis, vibrations of an infinitely long poroelastic composite circular cylinder are investigated 

employing Biot’s (1956) theory of wave propagation in porous materials.  Biot’s model consists of an elastic matrix 

permeated by a network of interconnected spaces saturated with liquid.  The frequency equations of vibrations are 

obtained for poroelastic composite cylinder and as well for some particular cases i.e., poroelastic composite hollow 

cylinder with rigid casing, poroelastic composite bore and poroelastic bore. Non-dimensional phase velocity as a 

function of wavenumber is computed in each case i.e., poroelastic composite hollow cylinder, poroelastic composite 

bore and poroelastic composite cylinder with rigid casing.  The results are presented graphically for two types of 

poroelastic composite cylinders and then discussed.   

2. Basic equations, Formulation and solution of the Problem  

The equations of motion of a homogeneous, isotropic poroelastic solid (Biot 1956) in the presence of dissipation b 

are: 

  

2
2

11 122
( ) ( ) ( )N A N e Q b

t t

 
         

 
u u U u U                                 

  
2

12 222
( ) ( )Q e R b

t t

 
      

 
u U u U             (1) 

where 
2  is the Laplacian operator  u(u, v, w) and  U(U, V, W) are solid and liquid displacements ; e and   are the 

dilatations of solid and liquid. A, N, Q, R are all poroelastic constants and  11 12 22, ,    are the mass coefficients 

following Biot (1956) such that the sums 11 12( )  and 12 22( )   are masses of solid and liquid, respectively 

the parameter   represents mass coupling between solid and liquid. The poroelastic constants A and N corresponds to 

familiar have constants in a purely elastic solid. The coefficient N represents the shear modulus required on the 

liquid to force a certain amount of the liquid to force a certain amount of the liquid into the aggregate while the total 

volume remains constant. Also, the coefficient Q represents the coupling between the volume changes of solid to 

that of liquid. The stresses kl  and the liquid pressure s of the poroelastic solid are   

                                  2 ( ) ,kl kl klNe Ae Q                        ( , , , )k l r z  

                                     s = Qe + R                                                                                    (2)  
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where kl is the well-known Kronecker delta function and kle are strain components of poroelastic solid. 

Let (r,  , z ) be cylindrical polar co-ordinates. Consider a homogeneous, isotropic poroelastic composite hollow 

cylinder with inner (core) and outer (casing) shells made of different poroelastic materials and whose axis is in the 

direction of z-axis. The inner radius of core is 1r , outer radius of casing is 2r  and ‘a’ is the interface radius.  The 

prefixes j =1, 2 are used to denote two cylinders related to poroelastic composite cylinder.  The quantities with 

prefix (1) refer to the core, while the prefix (2) refers to the casing.    

 

 We consider the plane-strain vibrations in poroelastic cylinder such that the displacements of solid 

( ,0, )j j ju wu  and  liquid ( ,0, )j j jU WU
 
are 

 

   

1 1 1 1 1

2 2 2 2 2

,   ,

,   ,

j j j j j

j j

j j j j j

j j

u w
r z z r r

U W
r z z r r

   
    

   

   
    

   

    

    
                    (3) 

 

 where j =1, 2 and 1 2 1 2, , ,j j j j     are functions of r,z and time t. 

Substitution of Eq. (3) into Eq. (1) yields 

  

2
2 2

1 2 11 1 12 2 1 22

2
2 2

1 2 12 1 22 2 1 22

2
2

1 11 1 12 2 1 22

( ) ( )

( ) ( )

                  ( ) ( )

                                 0

j j j j j j j j j j

j j j j j j j j j j

j j j j j j j j

P Q b
t t

Q R b
t t

N b
t t

       

       

      

 
      

 

 
      

 

 
    

 
2

12 1 22 2 1 22
( ) ( )j j j j j jb

t t
     

 
   
          (4)

            

where 2j j jP A N  ,   ( j = 1, 2). 

The solution of (4) can be obtained as 
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 

 

 

1 1 0 1 2 0 1 3 0 2 4 0 2

2 2 2 2

2 1 1 0 1 2 1 0 1 3 2 0 2 4 2 0 2

1 5 1 3 6 1 3

  ( ) ( ) ( ) ( )  exp ( ) ,

 ( ) ( ) ( ) ( )  exp ( ) ,

 ( ) ( ) exp ( ) ,

j j j j j j j j j

j j j j j j j j j j j j j

j j j j j

C J r C Y r C J r C Y r i kz t

C J r C Y r C J r C Y r i kz t

C J r C Y r i kz t

      

       

    

     

         

   

12

2 1

22

,
j

j j

j

M

M
  

                    (5)                                                                                                           

where 1 2 3 4 5 6, , , ,  and j j j j j jC C C C C C are constants,  is frequency of wave, k is wave number, Jn and Yn are 

Bessel functions of first and second kind, respectively, each of order n, 

2

2

2
2 ,  for 1,2,3,j l

j l

k l
V

  


  

2 2

2

2

1 11 12

12 12

( ) ( )
 for 1,2

( )

j j j j j j j j

j k

j k j j j j

P R Q V R M Q M
k

V R M Q M


  
 


    

11 11 12 12 22 22, , ,j j j j j j

ib ib ib
M M M  

  
     

   

                                       (6) 

1 2,j jV V are dilatational wave velocities of first and second kind, respectively, and 3jV is shear wave velocity.   

Substituting the eqs. (5) into eqs. (3) and then using eq. (2), the displacements, stresses and liquid pressure can be 

obtained as  

 

 

1 11 2 12 3 13 4 14 5 15 6 16

1 21 2 22 3 23 4 24 5 25 6 26

1 31 2 32 3 33 4

( ) [ ( ) ( ) ( ) ( ) ( ) ( )]exp ( ) ,

( ) [ ( ) ( ) ( ) ( ) ( ) ( )]exp ( ) ,

[ ( ) ( ) ( )

j rr j j j j j j

j rz j j j j j j

j j j j j

s c M r c M r c M r c M r c M r c M r i kz wt

c M r c M r c M r c M r c M r c M r i kz wt

s c M r c M r c M r c M

       

      

   





 

 

 

34 5 15 6 16

1 41 2 42 3 43 4 44 5 45 6 46

1 51 2 52 3 53 4 54 5 55 6 56

( ) ( ) ( )]exp ( ) ,

[ ( ) ( ) ( ) ( ) ( ) ( )]exp ( ) ,

[ ( ) ( ) ( ) ( ) ( ) ( )]exp ( ) ,

j j

j j j j j j j

j j j j j j j

j

r c M r c M r i kz wt

u c M r c M r c M r c M r c M r c M r i kz wt

w c M r c M r c M r c M r c M r c M r i kz wt

s

r

  

      

      

 

 

 1 31 2 32 3 33 4 34[ ( ) ( ) ( ) ( )]exp ( )j j j jc N r c N r c N r c N r i kz wt    

                                                                                                                                          (7)  

       where the elements are 

             

 2 2 2 2

11 1 1 1 0 1

1

1 1

( ) ( ) ( ) ( ) ( ) ( )

2
                 ( )

j j j j j j j j j j j j j

j j

j

M r Q R A Q k Q R P Q J r

N
J r

r

             



   



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15 3 0 3 1 3

21 1 1 1

2 2

25 3 1 3

2 2 2

31 1 1 0 1

35

41 1 1 1

45 1 3

51 0 1

55

2
( ) 2 ( ) ( )

( ) 2 ( )

( ) ( ) ( )

( ) ( )( ) ( )

( ) 0

( ) ( )

( ) ( )

( ) ( )

(

j

j j j j j

j j j j

j j j j

j j j j j j

j

j j j

j j

j j

j

ik N
M r ik N J r J r

r

M r ik N J r

M r N k J r

M r R Q k J r

M r

M r J r

M r ikJ r

M r ikJ r

M r

  

 

 

  



 

 



  

 

 

  

 





3 0 3) ( )j jJ r  

 

    

2 1( ) ( ) for i=1,2,3,4,5 with replacing  and its derivatives, respectively, 

  by  and its derivatives,

j i j i n

n

M r M r J

Y


 

     

4 3( ) ( ) for i=1,2,3,4,5 with replacing  and its derivatives, respectively, 

  by  and its derivatives,

j i j i n

n

M r M r J

Y


 

     

6 5( ) ( ) for i=1,2,3,4,5 with replacing  and its derivatives, respectively, 

  by  and its derivatives,

j i j i n

n

M r M r J

Y


 

           

2 3 2

31 1 1 1 1 1

2 3 2

32 1 1 1 1 1

2 3 2

33 2 2 2 1 2

2 3 2

34 2 2 2 1 2

35

36

( ) ( )( ) ( ),

( ) ( )( ) ( ),

( ) ( )( ) ( ),

( ) ( )( ) ( ),

( ) 0,

( ) 0.

j j j j j j j

j j j j j j j

j j j j j j j

j j j j j j j

j

j

N r R Q k J r

N r R Q k Y r

N r R Q k J r

N r R Q k Y r

N r

N r

   

   

   

   





   

   

   

   

 

                                                                      (8) 

3. Boundary conditions and frequency equation: 

We assume that the outer surface of casing and inner surface of core are free from stress and there is a perfect 

bounding at the interface, thus the boundary conditions for stress-free vibrations of a poroelastic composite hollow 

cylinder in case of a pervious surface are  

 1 1 1 ;    ( ) 0,   ( ) 0rr rzat r r s      

 2 2 2 ;   ( ) 0,   ( ) 0rr rzat r r s          
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        1 2 1 2 1 2 1 2 ;    ;   ;   ;   ;rr rr rz rzat r a s s u u w w           

            1 2 1 2 ,  and  ;      0,at r r r a s s                  (9) 

while the boundary conditions in case of impervious surface are 

 1 1 1 ;    ( ) 0,   ( ) 0,rr rzat r r s      

 2 2 2 ;   ( ) 0,   ( ) 0,rr rzat r r s          

        1 2 1 2 1 2 1 2 ;    ;   ;   ;   ;rr rr rz rzat r a s s u u w w           

 1 2
1 2 ,  and ;    0

s s
at r r r a

r r

 
  

 
.            (10) 

 

Eqs. (7) and (9) results in a system of twelve homogeneous equations in constants 

 1 2 3 4 5 6, , , ,  and ,   = 1, 2j j j j j jC C C C C C j  such a homogeneous system can have non-trivial solutions only 

if the determinant of the coefficients of the unknowns vanishes identically. Thus by eliminating the constants, the 

frequency equation of vibrations for poroelastic composite hollow cylinder for pervious surface is obtained as                 

     0  for  , =1,2,....12i jC i j           (11) 

where  

1 1 1 1

1

2 1 2 1

2

3 1 3 1

3

4 1 1

( );      j=1,2,...6,

0;                  j=7,8,...12,

( );     j=1,2,...6

0;                 j=7,8,...12,

( );     j=1,2,3,4,

0;                 j=5,6,...12,

( );   

j j

j

j j

j

j j

j

j j

C M r

C

C M r

C

C M r

C

C M a















4 2 1, 6

5 1 2

  j=1,2,...6,

( );  j=7,8,...12,

( );     j=1,2,...6,

j j

j j

C M a

C M a





  .                                     

5 2 2, 6

6 1 3

6

( );   j=7,8,...12,

( );      j=1,2,3,4,

0 ;                j=5,6,...,12,

j j

j j

j

C M a

C M a

C






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7

7 2 3, 6

8 1 4

8 2 4, 6

9 1 5

9 2 5, 6

10,

0 ;                  j=1,2,3,4,5,6,11,12, 

( );    j=7,8,9,10,

( );       j=1,2,...6,

( );    j=7,8,...12,

( );        j=1,2,...6,

( );    j=7,8,...12,

j

j j

j j

j j

j j

j j

j

C

C M a

C M a

C M a

C M a

C M a

C





















10, 2 1, 6 2

0;                  j=1,2,...6,

( );  j=7,8,...12,j jC M r

 

11,

11, 2 2, 6 2

12,

12, 2 3, 6 2

0;                  j=1,2,...6,

( );  j=7,8,...12,

0;                  j=1,2,...6,

( );  j=7,8,...12.

j

j j

j

j j

C

C M r

C

C M r













           (12) 

 

In case of impervious surface, equations (7) and (9) gives the frequency equation as  

     

   0 for i, j=1,2,....12,i jD            (13) 

 

where 

1 1 1 1

1

2 1 2 1

2

3 1 3 1

3

( );          j=1,2,...6

0;                     j=7,8,...12;

( );         j=1,2,...6

0;                    j=7,8,...12;

( );         j=1,2,3,4

0;                    j=5,6,.

j j

j

j j

j

j j

j

D N r

D

D N r

D

D N r

D













4 1 1

4 2 1, 6

5 1 2

..12;

( );         j=1,2,...6

( );      j=7,8,...12;

( );         j=1,2,...6

j j

j j

j j

D N a

D N a

D N a








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5 2 2, 6

6 1 3

6

( );     j=7,8,...12;

( );        j=1,2,3,4

0 ;                 j=5,6,...12;

j j

j j

j

D N a

D N a

D






 

7

7 2 3, 6

8 1 4,

8 2 4, 6

9 1 5

9 2 5, 6

0 ;                  j=1,2,3,4,5,6,11,12,

( );     j=7,8,9,10,

( );        j=1,2,...6,

( );     j 7,8,...12,

( );         j=1,2,...6,

( );     j=7,8,...12,

j

j j

j j

j j

j j

j j

D

D N a

D N a

D N a

D N a

D N a

D













 





10,

10, 2 1, 6 2

0;                  j=1,2,...6,

( );   j=7,8,...12,

j

j jD N r





 

11,

11, 2 2, 6 2

12,

12, 2 3, 6 2

0;                   j=1,2,...6,

( );    j=7,8,...12,

0;                   j=1,2,...6,

( );    j=7,8,...12.

j

j j

j

j j

D

D N r

D

D N r













 

and 

1 1

2 2

3

( ) ( )  for  =1,2,3,4,5,8,9,10,11,    =1 to 6,

( ) ( )  for  =1,2,3,4,5,8,9,10,11,   =7 to 12,

( ) for m=1,2,3,4 and ( ) for all ,  are defined in equation (8).

lm lm

lm lm

j m j lm

N r M r l m

N r M r l m

N r M r l m



          (14) 

 

Motions having infinite wavelength 

 When the wavelength is infinite or the wave number is zero, the frequency equation (11) of  poroelastic 

composite hollow cylinder for pervious surface reduces to  

     

    A1A2 = 0            (15) 

 

with  
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1 11 1 12 1 13 1 14

1 31 1 32 1 33 1 34

1 25 1 26 1 11 1 12 1 13 1 14 2 11 2 12 2 13 2 14

1 25 1 25 1 25 1 25 1 31 1 32 1 33 1 34

1 2

1 25 1 25 1 25 1 25 2 31 2 32 2 33 2 34

1 25 1 25 1 41 1 42 1 43 1 44 2 41 2 42 2 43 2

0 0 0 0

0 0 0 0

0 0

0 0 0 0
,

0 0 0 0

0 0

M M M M

M M M M

M M M M M M M M M M

M M M M M M M M
A A

M M M M M M M M

M M M M M M M M M

 

44

2 11 2 12 2 13 2 14

2 31 2 32 2 33 2 34

0 0 0 0

0 0 0 0

M

M M M M

M M M M

 

                (16) 

Where the elements ( )j lmM r are defined in eqs. (12) for k = 0. From eq. (16) it is clear that A1 = 0 or A2 = 0. The 

frequency equation   

            A1 = 0             (17) 

involves only shear wave velocity, hence it is the frequency equation of axially symmetric shear vibrations of a 

poroelastic composite hollow cylinder for infinite wavelength in case of pervious surface.  The frequency equation  

        A2 = 0            (18) 

involves only dilatational wave velocity, hence it is the frequency equation of axially symmetric dilatational 

vibrations of a poroelastic composite hollow cylinder for infinite wavelength in case of pervious surface. Eq.(15) 

shows that the axially symmetric shear and dilatational vibrations of  poroelastic composite hollow cylinder for a 

pervious surface are uncoupled when wavelength is infinite. 

Similarly, the frequency equation (13) of vibrations in poroelastic composite hollow cylinder for an impervious 

surface reduces to 

     B1B2 = 0,            (19) 

with  B1 = 

1 25 1 1 26 1

1 25 1 26 2 25 2 26

1 55 1 56 2 55 2 56

2 25 2 2 26 2

( ) ( ) 0 0

( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( )

0 0 ( ) ( )

N r N r

N a N a N a N a

N a N a N a N a

N r N r
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1 11 1 1 12 1 1 13 1 1 14 1

1 31 1 1 32 1 1 33 1 1 34 1

1 11 1 12 1 13 1 14 2 11 2 12 2 13 2 14

1 31 1 32 1 33 1 34

2

2 31 2 32 2 33 2 34

1 41

( ) ( ) ( ) ( ) 0 0 0 0

( ) ( ) ( ) ( ) 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0 0 0 0

0 0 0 0 ( ) ( ) ( ) ( )

(

N r N r N r N r

N r N r N r N r

N a N a N a N a N a N a N a N a

N a N a N a N a
B

N a N a N a N a

N



1 42 1 43 1 44 2 41 2 42 2 43 2 44

2 11 2 2 12 2 2 13 2 2 14 2

2 31 2 2 32 2 2 33 2 2 34 2

) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0 ( ) ( ) ( ) ( )

0 0 0 0 ( ) ( ) ( ) ( )

a N a N a N a N a N a N a N a

N r N r N r N r

N r N r N r N r

 

               (20) 

where the elements ( )j lmN r  are defined in eq. (8) and are calculated for k = 0.  

 From eq. (19) it is clear that B1 = 0 or B2 = 0. Equation  

                                                                     B1=0                                      (21) 

is the frequency equation of axially symmetric shear vibrations of poroelastic composite hollow cylinder for an 

impervious surface when wavelength is infinite, whereas the equation  

                B2=0                                                             (22) 

 is the frequency equation of dilatational vibrations of  poroelastic composite hollow cylinder for an impervious 

surface when wavelength is infinite.  Eq.(19) shows that the axially symmetric shear and dilatational vibrations of  

poroelastic composite hollow cylinder for an impervious surface are uncoupled. Also, we see that the equations 

A1=0 and B1=0 are same, hence the frequency equation of axially symmetric shear vibrations of poroelastic 

composite hollow cylinder is independent of nature of surface for infinite wavelength. 

4 Particular cases   

Under suitable boundary conditions the poroelastic composite hollow cylinder reduces to the following particular 

cases 

4.1  Poroelastic composite hollow cylinder with rigid casing, 

4.2  Poroelastic composite bore, and 

4.2.a  Poroelastic bore. 

4.1  Poroelastic composite hollow cylinder with rigid casing 

When shear modulus of the casing is larger than that of core, we can assume that casing is perfectly rigid.  Letting 

the shear modulus of the casing approaches to infinity i.e., 
(2)N  , then the shear wave velocity of casing 

approaches to infinity and hence (2)

3 0.  Under this limiting condition, the frequency equation (11) of vibrations 

of poroelastic composite hollow cylinder for pervious surface reduces to 

             C1 C2 = 0                            (23) 
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with    C1  =  

1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1

1 21 1 1 22 1 1 23 1 1 24 1 1 25 1 1 26 1

1 31 1 1 32 1 1 33 1 1 34 1

1 31 1 32 1 33 1 34

1 41 1 42 1 43 1 44 1 45 1 46

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0 0

( ) ( ) ( ) ( ) 0 0

( ) ( ) ( ) ( ) ( ) (

M r M r M r M r M r M r

M r M r M r M r M r M r

M r M r M r M r

M a M a M a M a

M a M a M a M a M a M

1 51 1 52 1 53 1 54 1 55 1 56

)

( ) ( ) ( ) ( ) ( ) ( )

a

M a M a M a M a M a M a

and 

 

 

          

2 11 2 12 2 13 2 14 2 15 2 16

2 21 2 22 2 23 2 24 2 25 2 26

2 31 2 32 2 33 2 34

2

2 11 2 2 12 2 2 13 2 2 14 2 2 15 2 2 16 2

2 21 2 2 22 2 2 23 2 2 24 2 2 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

A a A a A a A a A a A a

A a A a A a A a A a A a

A a A a A a A a
C

A r A r A r A r A r A r

A r A r A r A r A



5 2 2 26 2

2 31 2 2 32 2 2 33 2 2 34 2

( ) ( )

( ) ( ) ( ) ( ) 0 0

r A r

A r A r A r A r
         (24)

 

where  

2 2 2 2 2 1
2 11 2 2 2 1 2 2 2 1 2 1 0 2 1 1 2 1

2 2 2 2 2 1
2 12 2 2 2 1 2 2 2 1 2 1 0 2 1 1 2 1

2 2 2 2 2 2
2 13 2 2 2 2 2 2 2 2 2 2 0 2 2 1 2 2

2
( ) {( ) ( ) 2 } ( ) ( ),

2
( ) {( ) ( ) 2 } ( ) ( ),

2
( ) {( ) ( ) 2 } ( ) ( ),

A r Q R k Q R J r J r
r

A r Q R k Q R Y r Y r
r

A r Q R k Q R J r J r
r

     

     

     


    


    


    

 

2 2 2 2 2 2
2 14 2 2 2 2 2 2 2 2 2 2 0 2 2 1 2 2

2 15 2 3 0 2 3 1 2 3

2 16 2 3 0 2 3 1 2 3

2
( ) {( ) ( ) 2 } ( ) ( ),

2
( ) 2 ( ) ( ),

2
( ) 2 ( ) ( ),

A r Q R k Q R Y r Y r
r

ik
A r ik J r J r

r

ik
A r ik J r Y r

r

     

  

  


    

  

  
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2 21 2 1 1 2 1

2 22 2 1 1 2 1

2 23 2 1 1 2 2

2 24 2 1 1 2 2

2 2

2 25 2 3 1 2 3

2 2

2 26 2 3 1 2 3

2 2 2

2 31 2 2 1 2 1 0 2 1

2

2 32 2 2 1 2 1

( ) 2 ( ),

( ) 2 ( ),

( ) 2 ( ),

( ) 2 ( ),

( ) ( ) ( ),

( ) ( ) ( ),

( )  ( ) ( ),

( )  (

A r ik J r

A r ik Y r

A r ik J r

A r ik Y r

A r k J r

A r k Y r

A r R k J r

A r R

 

 

 

 

 

 

 



 

 

 

 

 

 

  

  2 2

0 2 1

2 2 2

2 33 2 2 2 2 2 0 2 2

2 2 2

2 34 2 2 2 2 2 0 2 2

) ( ),

( )  ( ) ( ),

( )  ( ) ( ),

k Y r

A r R k J r

A r R k Y r



 

 



  

  

 

and  

2
2 2 2

2

2 2 12 2 2 22

2
  for 1,2 and 3.i

i

v R
i

R k Q k


 




             (25) 

From eq. (23) it is clear that the physical parameters in the determinants C1, C2 are, respectively, related to core and 

casing. Hence, the vibrations of poroelastic composite hollow cylinder related to core and casing for pervious 

surface are uncoupled when the solid in casing is rigid, also we obtain C1= 0 or C2= 0. The equation  

      C1= 0,                                        (26) 

represents the frequency equation of vibrations of poroelastic core for pervious surface when it is clamped along its 

outer surface, whereas the equation   

C2 = 0,                                                                      (27)  

represents the frequency equation of vibrations of hollow rigid casing for pervious surface when the boundaries are 

free from stress.  

In a similar way, when the solid in casing is rigid, the frequency eq. (13) of vibrations of poroelastic composite 

hollow cylinder for an impervious surface reduces to 

                              D1 D2 = 0,                                                 (28)   

with         D1 =  

1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1

1 21 1 1 22 1 1 23 1 1 24 1 1 25 1 1 26 1

1 31 1 1 32 1 1 33 1 1 34 1

1 31 1 32 1 33 1 34

1 41 1 42 1 43 1 44 1 45 1 46

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0 0

( ) ( ) ( ) ( ) 0 0

( ) ( ) ( ) ( ) ( ) (

N r N r N r N r N r N r

N r N r N r N r N r N r

N r N r N r N r

N a N a N a N a

N a N a N a N a N a N

1 51 1 52 1 53 1 54 1 55 1 56

)

( ) ( ) ( ) ( ) ( ) ( )

a

N a N a N a N a N a N a

   and  
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2 11 2 12 2 13 2 14 2 15 2 16

2 21 2 22 2 23 2 24 2 25 2 26

2 31 2 32 2 33 2 34

2

2 11 2 2 12 2 2 13 2 2 14 2 2 15 2 2 16 2

2 21 2 2 22 2 2 23 2 2 24 2 2 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

B a B a B a B a B a B a

B a B a B a B a B a B a

B a B a B a B a
D

B r B r B r B r B r B r

B r B r B r B r B



5 2 2 26 2

2 31 2 2 32 2 2 33 2 2 34 2

( ) ( )

( ) ( ) ( ) ( ) 0 0

r B r

B r B r B r B r

                 (29) 

where 

2 1 2 1

2 2 2 2

2 3 2

2 31 2 2 1 2 2 1 2 1 1 2 1

2 3 2

2 32 2 2 1 2 2 1 2 1 1 2 1

2 3 2

2 33 2 2 2 2 2 2 2 2 1 2 2

2 34 2

( ) ( ) for  1,2,3,4,

( ) ( ) for  1,2,3,4,

( ) (  )( ) ( ),

( ) (  )( ) ( ),

( ) (  )( ) ( ),

( ) (

m m

m m

B r A r m

B r A r m

B r R Q k J r

B r R Q k Y r

B r R Q k J r

B r R

 

 

   

   

   

 

   

   

   

2 3 2

2 2 2 2 2 2 2 1 2 2 )( ) ( ).Q k Y r    

           (30) 

and ( )j lmN r are defined in eq. (14) and 2 ( )lmA r  are defined in eq. (25). 

As in the case of pervious surface, the vibrations of poroelastic composite hollow cylinder related to core and casing 

for an impervious surface are uncoupled when the solid in casing is rigid. From eq. (28) it is clear that D1= 0 or D2= 

0. The equation  

 D1= 0,                     (31) 

represents the frequency equation of vibrations poroelastic core for an impervious surface when it is clamped along 

its outer surface, whereas the equation  

 D2 = 0,               (32)  

represents the frequency equation of vibrations of  hollow rigid casing for an impervious surface when the 

boundaries are free from stress. 

When k = 0, the frequency equation C1 = 0 of vibrations of poroelastic core for pervious surface when it is clamped 

along its outer surface further reduces to   

 

     C3 C4 = 0,              (33) 

with                                        
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C3 = 

1 11 1 1 12 1 1 13 1 1 14 1

1 31 1 1 32 1 1 33 1 1 34 1

1 31 1 32 2 33 2 34

1 41 1 42 1 43 1 44

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

M r M r M r M r

M r M r M r M r

M a M a M a M a

M a M a M a M a

, C4 = 
1 25 1 1 26 1

1 55 1 56

( ) ( )

( ) ( )

M r M r

M a M a
          (34)  

where ( )j lmM r are defined in eq. (8) and are evaluated for k = 0. 

  From eq. (33) we obtain C3= 0 or C4= 0. In particular, the equation  

 C3 = 0,                               (35) 

is the frequency equation of dilatational vibrations of poroelastic core for pervious surface when it is clamped along 

its outer surface in the case of infinite wavelength, while the equation 

C4 = 0,                (36) 

is the frequency equation of shear vibrations of poroelastic core for pervious surface when it is clamped along its 

outer surface in the case of infinite wavelength. Eq.(34) shows that the shear and dilatational vibrations of 

poroelastic core for pervious surface when it is clamped along its outer surface are uncoupled in case of infinite 

wavelength. 

Similarly, the frequency equation D1 = 0 of vibrations of poroelastic core for impervious surface when it is clamped 

along its outer surface reduces to    

       D3 D4  = 0,              (37) 

with      

D3 = 

1 11 1 1 12 1 1 13 1 1 14 1

1 31 1 1 32 1 1 33 1 1 34 1

1 31 1 32 2 33 2 34

1 41 1 42 1 43 1 44

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N r N r N r N r

N r N r N r N r

N a N a N a N a

N a N a N a N a

  D4 = 
1 25 1 1 26 1

1 55 1 56

( ) ( )

( ) ( )

N r N r

N a N a
          (38)  

where ( )j lmN r are defined in eq. (14) and are evaluated for k = 0. 

Using eq. (37) we obtain D3= 0 or D4= 0.  The equation  

 D3 = 0,                               (39) 

is the frequency equation of dilatational vibrations of poroelastic core for impervious surface when it is clamped 

along its outer surface in the case of infinite wavelength, while the equation 

D4 = 0,                (40) 

is the frequency equation of shear vibrations of poroelastic core for impervious surface when it is clamped along its 

outer surface in the case of infinite wavelength. This equation is same as eq. (35), hence the frequency equation of 

shear vibrations of poroelastic core when it is clamped along its outer surface in the case of infinite wavelength is 
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independent of nature of surface. In addition, eq. (37) shows that the shear and dilatational vibrations of poroelastic 

core for impervious surface when it is clamped along its outer surface are uncoupled. 

When k = 0, the frequency equation C2 = 0 of vibrations of poroelastic casing for pervious surface when the solid is 

rigid further reduces to   

     C5 C6 = 0,               (41) 

with                                        

 

2 11 2 12 2 13 2 14

2 31 2 32 2 33 2 34 2 25 2 26 1

5 6

2 11 2 2 12 2 2 13 2 2 14 2 2 25 2 2 26 2

2 31 2 2 32 2 2 33 2 2 34 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

A a A a A a A a

A a A a A a A a A a A a
C C

A r A r A r A r A r A r

A r A r A r A r

           (42)  

where ( )j lmA r are defined in eq. (25) and are evaluated for k = 0. 

  From eq. (41) we obtain C5= 0 or C6= 0. In particular, the equation  

 C5 = 0,                               (43) 

is the frequency equation of dilatational vibrations of poroelastic casing for pervious surface when the solid is rigid 

in the case of infinite wavelength, while the equation 

C6 = 0,                (44) 

is the frequency equation of shear vibrations of poroelastic casing for pervious surface when the solid is rigid in the 

case of infinite wavelength. Eq.(41) shows that the shear and dilatational vibrations of poroelastic casing for 

pervious surface when the solid is rigid are uncoupled in the case of infinite wavelength. 

Similarly, the frequency equation D1 = 0 of vibrations of poroelastic casing for impervious surface when the solid is 

rigid reduces to    

       D5 D6  = 0,              (45) 

with      

2 11 2 12 2 13 2 14

2 31 2 32 2 33 2 34 2 25 2 26 1

5 6

2 11 2 2 12 2 2 13 2 2 14 2 2 25 2 2 26 2

2 31 2 2 32 2 2 33 2 2 34 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

B a B a B a B a

B a B a B a B a B a B a
D D

B r B r B r B r B r B r

B r B r B r B r

 

   

       (46)  

where ( )j lmB r are defined in eq. (30) and are evaluated for k = 0. 

Using eq. (45) we obtain D5= 0 or D6= 0.  The equation  

 D5 = 0,                               (47) 
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is the frequency equation of dilatational vibrations of poroelastic casing for impervious surface when the solid is 

rigid in the case of infinite wavelength, while the equation 

D6 = 0,                (48) 

is the frequency equation of shear vibrations of poroelastic casing for impervious surface when the solid is rigid in 

the case of infinite wavelength. This equation is same as eq. (44), hence the frequency equation of shear vibrations 

of poroelastic casing for impervious surface when the solid is rigid in the case of infinite wavelength is independent 

of nature of surface. In addition, eq. (45) shows that the shear and dilatational vibrations of poroelastic casing for 

impervious surface when the solid is rigid are uncoupled in the case of infinite wavelength. 

4.2  Poroelastic composite bore 

When the outer radius 2r  of casing tends to  , the frequency equation (11) of poroelastic composite hollow 

cylinder for pervious surface reduces to  

      E1 = 0,            (49) 

where 

1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1

1 21 1 1 22 1 1 23 1 1 24 1 1 25 1 1 26 1

1 31 1 1 32 1 1 33 1 1 34 1

1 11 1 12 1 13 1 14 1 15 1 16 2 12 2 14 2

1

( ) ( ) ( ) ( ) ( ) ( ) 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) 0 0 0

( ) ( ) ( ) ( ) 0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

M r M r M r M r M r M r

M r M r M r M r M r M r

M r M r M r M r

M a M a M a M a M a M a M a M a M

E 

16

1 21 1 22 1 23 1 24 1 25 1 26 2 22 2 24 2 26

1 31 1 32 1 33 1 34

2 32 2 34 2 36

1 41 1 42 1 43 1 44 1 45 1 46 2 42 2 44 2 46

1 51 1

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0 0 0 0 0

0 0 0 0 0 0 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

a

M a M a M a M a M a M a M a M a M a

M a M a M a M a

M a M a M a

M a M a M a M a M a M a M a M a M a

M a M52 1 53 1 54 1 55 1 56 2 52 2 54 2 56( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )a M a M a M a M a M a M a M a

      

where the elements lmj M are defined in eq. (8). 

Eq. (49) is the frequency equation of poroelastic composite bore for a pervious surface. 

  Similarly, the frequency equation of poroelastic composite bore for impervious surface can be obtained as 

      F1 = 0,            (50) 
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where

1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1

1 21 1 1 22 1 1 23 1 1 24 1 1 25 1 1 26 1

1 31 1 1 32 1 1 33 1 1 34 1

1 11 1 12 1 13 1 14 1 15 1 16 2 12 2 14 2

1

( ) ( ) ( ) ( ) ( ) ( ) 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) 0 0 0

( ) ( ) ( ) ( ) 0 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

N r N r N r N r N r N r

N r N r N r N r N r N r

N r N r N r N r

N a N a N a N a N a N a N a N a N

F 

16

1 21 1 22 1 23 1 24 1 25 1 26 2 22 2 24 2 26

1 31 1 32 1 33 1 34

2 32 2 34 2 36

1 41 1 42 1 43 1 44 1 45 1 46 2 42 2 44 2 46

1 51 1

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0 0 0 0 0

0 0 0 0 0 0 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

a

N a N a N a N a N a N a N a N a N a

N a N a N a N a

N a N a N a

N a N a N a N a N a N a N a N a N a

N a N52 1 53 1 54 1 55 1 56 2 52 2 54 2 56( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )a N a N a N a N a N a N a N a

  

                      (51) 

Eq. (50) is the frequency equation of poroelastic composite bore for an impervious surface. 

where the elements lmj N are defined in eq. (14). 

For infinite wavelength, the frequency equation E1 = 0 of vibrations of poroelastic composite bore for pervious 

surface reduces to      

     E2 E3 = 0,            (52) 

with 

1 25 1 1 26 1

2 1 25 1 26 2 26

1 55 1 56 2 56

( ) ( ) 0

( ) ( ) ( )

( ) ( ) ( )

M r M r

E M a M a M a

M a M a M a

  and   

1 11 1 1 12 1 1 13 1 1 14 1

1 31 1 1 32 1 1 33 1 1 34 1

1 11 1 12 1 13 1 14 2 12 2 14

3

1 31 1 32 1 33 1 34

2 32 2 34

1 51 1 52 1 53 1 54 2 52 2 54

( ) ( ) ( ) ( ) 0 0

( ) ( ) ( ) ( ) 0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0 0

0 0 0 0 ( ) ( )

( ) ( ) ( ) ( ) ( )

M r M r M r M r

M r M r M r M r

M a M a M a M a M a M a
E

M a M a M a M a

M a M a

M a M a M a M a M a M



( )a

          (53) 

where the elements lmj M are defined in eq. (8) and are evaluated for k = 0. 

From eq. (52), it is clear that E2 = 0 or E3 =0.  In particular, 

     E2 = 0,           (54) 

is the frequency equation of shear vibrations of poroelastic composite bore for pervious surface, whereas the 

equation 
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     E3= 0,           (55)  

is the frequency equation of dilatational vibrations of poroelastic composite bore for pervious surface.  Eq. (50) 

shows that the shear vibrations and dilatational vibrations of poroelastic composite bore for pervious surface are 

uncoupled. 

 In a similar way, for infinite wavelength, the frequency equation F1 = 0 of vibrations of poroelastic 

composite bore for an impervious surface reduces to     

           F2 F3 = 0,           (56) 

with 

1 25 1 1 26 1

2 1 25 1 26 2 26

1 55 1 56 2 56

( ) ( ) 0

( ) ( ) ( )

( ) ( ) ( )

N r N r

F N a N a N a

N a N a N a

  and 

1 11 1 1 12 1 1 13 1 1 14 1

1 31 1 1 32 1 1 33 1 1 34 1

1 11 1 12 1 13 1 14 2 12 2 14

3

1 31 1 32 1 33 1 34

2 32 2 34

1 51 1 52 1 53 1 54 2 52 2 54

( ) ( ) ( ) ( ) 0 0

( ) ( ) ( ) ( ) 0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0 0

0 0 0 0 ( ) ( )

( ) ( ) ( ) ( ) ( )

N r N r N r N r

N r N r N r N r

N a N a N a N a N a N a
F

N a N a N a N a

N a N a

N a N a N a N a N a N



( )a

                                        (57) 

where the elements lmj N are defined in eq. (14) and are evaluated for k = 0. 

From eq. (56), clearly F2 = 0 or F3 =0.  In particular, 

     F2 = 0,           (58) 

is the frequency equation of shear vibrations of poroelastic composite bore for an impervious surface which is same 

as equation E2=0 using (14), hence the frequency equation of shear vibrations of poroelastic composite bore is 

independent of nature of surface for infinite wavelength. 

 The equation 

     F3= 0,           (59)  

is the frequency equation of dilatational vibrations of poroelastic composite bore for an impervious surface.  Eq. (56) 

shows that the shear vibrations and dilatational vibrations of poroelastic composite bore for an impervious surface 

are uncoupled for infinite wavelength. 

4.2.a  Poroelastic bore 

  When the material parameters of core and casing are same i.e. 2 1 ,P P P   2 1 ,Q Q Q   2 1R R R   

and 2 N = 1 N =N then the poroelastic composite bore will become a poroelastic bore of radius r1.  Under these 

conditions the frequency equation (48) of poroelastic composite bore for pervious surface reduces to  
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                     G1 = 0,                           (60) 

with   
1 12 1 1 14 1 1 16 1

1 1 22 1 1 24 1 1 26 1

1 32 1 1 34 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) 0

M r M r M r

G M r M r M r

M r M r

 ,             (61) 

where the elements lmj M are defined in eq. (8). 

Eq. (62) is the frequency equation of poroelastic bore for a pervious surface. 

  Similarly, the frequency equation of poroelastic bore for impervious surface can be obtained as  

  

      H1 = 0,           (62) 

with                
1 12 1 1 14 1 1 16 1

1 1 22 1 1 24 1 1 26 1

1 32 1 1 34 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) 0

N r N r N r

H N r N r N r

N r N r

 ,           (63)    

where the elements lmj N are defined in eq. (14). 

Eq. (62) is the frequency equation of poroelastic bore for an impervious surface. 

5. Non-dimensionalization of frequency equation   

The natural frequency will be real when the dissipation coefficient is zero i.e. b = 0. For the sake of numerical work 

the dissipation coefficient ‘b’ is taken as zero and hence we obtained only real frequency. To analyze the frequency 

equations of plane-strain vibrations of poroelastic composite hollow cylinders, it is convenient to introduce the 

following non-dimensional parameters: 

2 2 2 2 2 11 2 12 2 22
1 2 3 4 1 2 3

1 1 1 1 1 1 1

,   ,   ,   ,   ,   ,   ,
P Q R N

a a a a d d d
H H H H

  

  
      

1 1 1 1 1 11 1 12 1 22
1 2 3 4 1 2 3

1 1 1 1 1 1 1
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P Q R N

b b b b g g g
H H H H

  

  
        
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1 1 1 2 2 2

1 1 1 2 1 3 2 1 2 2 2 3

,   ,  , ,   ,   ,( ) ( ) ( ) ( ) ( ) ( )
V V V V V V

x y z x y z
V V V V V V

     
  

1 0

,
h

C


      

                              (64) 

where   is non-dimensional frequency and  

2 21 1
1 1 1 1 1 1 11 1 12 1 22 1 0 1 0

1 1

2 ,   2 ,    ,    .
N H

H P Q R C V   
 

                                    (65) 

Non-dimensional frequency ( ) is calculated for two types of composite cylinders, namely composite cylinder-I 

and composite cylinder-II for each pervious and impervious surface. Composite cylinder-I consists of core made up 

of sandstone saturated with water (Yew and Jogi, 1976) and casing is made up of sandstone saturated with kerosene 
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(Fatt, 1957), where as in composite cylinder-II, the core is sandstone saturated with kerosene and casing is sandstone 

saturated with water. The physical parameters of these poroelastic composite materials following equation (64) are 

given in Table 1.          

Table - 1     

                                                

Material 

Parameters 

a1 a2 a3 a4 d1 d2 d3 x2 y2 z2 

Composite 

Cylinder-I 0.445 0.034 0.015 0.123 0.887 -0.001 0.099 1.863 8.884 7.183 

Composite 

Cylinder–II 1.819 0.011 0.054 0.780 0.891 0 0.125 0.489 2.330 1.142 

 

b1 b2 b3 b4 g1 g2 g3 x1 y1 z1 

0.960 0.006 0.028 0.412 0.877 0 0.123 0.913 4.347 2.129 

0.843 0.065 0.028 0.234 0.901 -0.001 0.101 0.999 4.763 3.851 

 

6. Results and Discussion 

For a given poroelastic parameters, frequency equations when non-dimensionalized   using equation (64), constitute 

a relation between non-dimensional phase velocity and wave number.  Different values of r1/a and r2/a, viz., 1.1 and 

3 are taken for numerical computation.  These values, respectively, represent thin  and thick poroelastic shells.   

Figs. 1-4 depict phase velocity of vibrations of poroelastic composite hollow cylinders I and II for different 

combinations of thin and thick shells for pervious and impervious surfaces. In Fig.1, phase velocity for thin core and 

thin casing is has been plotted.  It is clear that the phase velocity of composite cylinder I is more than that of 

cylinder II and the phase velocity of cylinder II is steady. Also, there is no much difference between phase velocities 

of pervious and impervious surfaces for each of the cylinders I and II. Fig. 2 shows the phase velocity for thin core 

and thick casings. The phase velocity is same for pervious and impervious surfaces when the wavenumber is < 1 and 

> 4 in case of cylinder I, whereas in case of cylinder II it is true when the wavenumber is <1 and >7. The variation 

of phase velocity for thin casing and thick core is shown in Fig. 3. The phase velocity is same for pervious and 

impervious surfaces when the wavenumber is < 4 and > 6 in case of cylinder I, whereas in case of cylinder II it is 

true when the wavenumber is < 2 and >7.3.  Fig. 4 shows the phase velocity for thick core and thick casings. The 

phase velocity is same for pervious and impervious surfaces when the wavenumber is < 7 in case of cylinder I, 

whereas in case of cylinder II the phase velocity is different for pervious and impervious surfaces. 

The variation in phase velocity for poroelastic core when it is clamped along its outer surface is shown in Figs. 5-6. 

In particular, thin core is considered in Fig.5, whereas thick core is considered in Fig.6. From Fig. 5, it is clear that 

the phase velocity is same for both cylinders for each pervious and impervious surface. The phase velocity is same 
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for both cylinders when wave number is between 0 and 2. Also, the phase velocity is maximum when wavenumber 

is 1. In case of thick core, phase velocity is same for both cylinders when wave number is between 0 and 1. 

Figs. 7-8 depict phase velocity for poroelastic casing when the solid is rigid. In particular, thin casing is considered 

in Fig.7, whereas thick casing is considered in Fig. 8. In case of thin casing, the phase velocity is more for pervious 

surface than that of impervious surface for both cylinders I and II. In particular, the phase velocity is steady for 

impervious surface for both the cylinders. The maximum phase velocity is observed when wavenumber is 7 for 

impervious surface for cylinder I in case of thick casing.  

The variation in phase velocity for poroelastic composite bore is shown in Figs. 9-10. In particular, composite bore 

with thin core is considered in Fig. 9, whereas composite bore with thick core is considered in Fig.10. From Fig. 9, it 

is clear that the phase velocity for cylinder I higher than that of cylinder II when wavenumber is < 4.5 for 

impervious surface. Also, the maximum phase velocity is observed when wavenumber is 8 for impervious surface 

for  cylinder-I. 

7. Conclusion: 

The study of vibrations in poroelastic composite hollow cylinders and bore has lead to the following conclusions: 

(i)    The axially symmetric shear and dilatational vibrations of  poroelastic composite hollow cylinder for a pervious  

        surface are uncoupled when wavelength is infinite. 

(ii)   The frequency equation of axially symmetric shear vibrations of poroelastic composite hollow cylinder is  

        independent of nature of surface for infinite wavelength. 

(iii)  The vibrations of poroelastic composite hollow cylinder related to core and casing for pervious surface are            

         uncoupled when the solid in casing is rigid. In particular, in case of core the vibrations are observed when it is   

        clamped along its outer surface. 

(iv)  The shear and dilatational vibrations of poroelastic core for pervious surface when it is clamped along its outer  

        surface are uncoupled in case of infinite wavelength. 

(v)   The shear and dilatational vibrations of poroelastic casing for pervious surface when the solid is rigid are  

        uncoupled in the case of infinite wavelength. 

(vi)  The frequency equation of shear vibrations of poroelastic casing  is independent of nature of  surface when the  

        solid is rigid in the case of infinite wavelength 
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Fig.1 Variation of phase velocity  with the wave number  –  poroelastic composite hollow cylinder – Thin core 

and thin casing 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Variation of phase velocity  with the wave number  –  poroelastic composite hollow cylinder – Thin 

core and thik casing 
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Fig.3 Variation of phase velocity  with the wave number  –  poroelastic composite hollow cylinder – Thick 

core and thin casing 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  Variation of phase velocity  with the wave number  –  poroelastic composite hollow cylinder – Thick 

core and thick casing 
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Fig.5 Variation of phase velocity  with the wave number  –  poroelastic shell clamped along its outer surface   

 Thin shell 

 

 

 

 

 

                  

 

 

 

 

 

 

 

 

 

 Fig.6 Variation of phase velocity  with the wave number  – poroelastic shell clamped along its outer surface – 

Thick shell 
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Fig.7  Variation of phase velocity  with the wave number  –  poroelastic rigid casingl – Thin shell 

 

 

 

Fig.8  Variation of phase velocity  with the wave number  –  poroelastic rigid casingl – Thick shell 
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Fig.9 Variation of phase velocity  with the wave number  –  poroelastic composite bore –  

Thin core 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Fig.10 Variation of phase velocity  with the wave number  – poroelastic composite bore – Thick core 
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