

Adsorption Potentialities of Bio-Sorbents Derived from Pomegranate in the Removal of Methyl Red Dye from Polluted Waters

Authors & Affiliation:

Venkata Ramana Kokkiligadda^{1,}*, Rama Krishna Veni Pokala², Anusha Karumuri³ Hari Babu Bollikola¹

¹Department of Chemistry, Acharya Nagarjuna University, Andhra Pradesh-522510, India.

²Department of Applied Sciences and Humanities, Sasi Institute of Technology & Engineering, Tadepalligudem, Andhra Pradesh, India.

³Department of Chemistry, Govt. College of Women s (GCWA), Guntur, Andhra Pradesh. India.

Corresponding Author

Venkata Ramana Kokkiligadda

Email: prasanthikvr@gmail.com

Received Date: 18th Oct' 2020 Accepted Date: 2nd Dec' 2020

© 2020.The Authors. Published under Caribbean Journal of Science and Technology

ISSN 0799-3757

Abstract:

Synthetically prepared simulated waste waters was used for exploring sorption abilities of the sorbent substance obtained from barks and leaves of *Pomegranate* towards Methyl Red. Factors that affect adsorption like temperature, adsorbent dosage, starting dye concentration and time of contact were evaluated. Four adsorption isotherms namely Freundlich, Langmuir, Temkin and Dubinin-Radushkevich were analyzed for studying equilibrium of adsorption. Rate and adsorption process kinetics were identified by applying Weber and Morrish intraparticle diffusion, Bangham's pore diffusion, pseudo-first-order, pseudosecond-order and Elovich equations. Fivefold excess of common ions interference in natural aquifers, have been analyzed. Cations such as Ca²⁺, Mg²⁺ and Cu²⁺have shown little interference but Fe²⁺ and Zn²⁺ions combinedly maintained maximum withdrawal of the dye. Procedures that were developed could be successfully applied to few industrial effluents. Data collected out of experimentation was suitable to the pseudo-First order kinetic standard. Correlation coefficient (R²) and dimensionless separation factor (R_L) values conformed that adsorption process follows Langmuir adsorption indicating single layer formation. The adsorption process had good correlation coefficient equivalence with pseudo-second-order model. Temperature effect was also studied.

Keywords: Methyl Red(MeR); Equilibrium model; Bio-sorbent; Kinetics; Adsorption isotherms; Pomegranate.

Introduction:

Water infected by contaminates that degrade the water quality is known as polluted water. It includes the discharge of noxious materials, heavy metals, dyes,infectious germs, aerobic bacteria, solvable substances, etc. The main causes for dye pollution are the materials discharged from fibre, cloth, fur, food stuffs, cosmetics, dye, pulp and papermanufacturing industries [1]. Artificial dyes aren't consistently susceptibletowardbiodegradation, non-conventional biological waste water treatment, and protest towards microbial azo-dyes that are widely used in several industries, are the biggest class with diverse range of colours and structures. The need for the treatment of waste water contaminated with dye, arose because of environmental impact [2]. The usual waste water treatment is generally not effective and various chemical, physical and biological treatments or their combinations are being studied at present [3, 4]. Silica[5], alumina, with activated carbon [6] act as common adsorbents to treat waste water asevidenced by numerous researchers [7, 8].

To remove dyes from waste water, various techniques have been developed. Electro-kinetic coagulation, ion-exchange, membrane filtration, electrochemical oxidation and photo-catalytic degradation process [9-15] are the widely used techniques, but these methods are costly and may not be favourable in large scale treatments.

The current research is a thorough study on optimizing extraction requisites like sorption quiddity of active biosorbent concerningMR - methyl red by varying contact time, pH, dose level of adsorbent, MR dye (methyl red) initial concentration, temperature, and ions that are interfering. The Freundlich, Langmuir, Temkin and Dubinin-Radushkevich (D-R) isotherms and kinetics of adsorption processes were used to analyze pseudo first-order, pseudo second-order, Weber and Morrish intraparticle diffusion, Bangham's pore diffusion and Elovich equations. Temperature effect on adsorption was also studied. For removal of MR from polluted waste water samples with biomaterials extracted from Pomegranate's barks & leaves, the developed methodologies have been applied. Pomegranate is a commonly available plant, which is used in fencing property perimeter in Kerala.

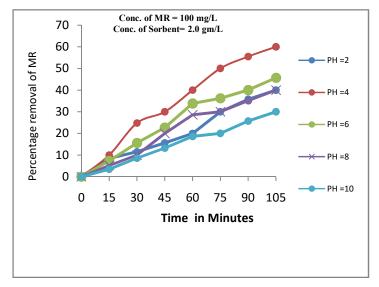
Bark of Pomegranate

Leaves of Pomegranate

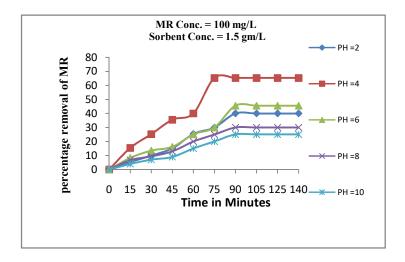
Figure 1: Bark and leaves of Pomegranate

3. Materials and Methods:

Chemicals-Chemicals of analytical reagent grade were utilized.


MR's Stock solution-Required amount of analytical reagent grade MR dye was dissolved in double distilled water to prepare 100 mg/L of MR solution. It was diluted as of required.

Preparation of Adsorbent-Pomegranate leaves and bark were gathered, chopped into tiny pieces, cleaned by double water, and left to dry for 2 days in the sun. We investigated the sorption capacities of plant materials against Methyl Red & found favourable findings.


Adsorption Experiment-For extraction process the batch system has been adopted [16-18]. The adsorbents were weighed carefully and taken into well cleaned 1 L/500 mL stopper bottles that contain 500 mL/250 mL of MR Dye solution of pre-decided concentrations. pH meter was used to adjust several starting pH values of the suspensions with dilute HCl or dilute NaOH solutions. Samples were shacked strenuously using mechanical shakers for allowing them to be in equilibrium up to required time. An aliquot of the sample was used to determine MR dye using Spectrophotometric method [19-20]. λ max of the dye was found as 464.9 nm alsoat low concentrations law of Beers-Lambert obeyed. Optical density measurements were taken at λ max 464.9 nm by making use of UV-Visible Spectrophotometer of Systronics make. The optical density attained for un-known solution was compared with reference graphs of known concentrations of MR Dye using Least Squares method.

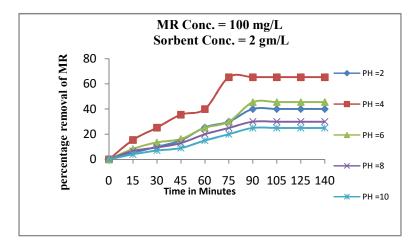
By using various physicochemical parameters, adsorbents - sorption characteristics were studied. MR dye percentage removal from simulated water samples at different pH values was studied in relation to time of equilibration at a permanent sorbent concentration. The results attained were shown in **Figure 2-5** and **6.**Extraction studies were made to determine the least dosage required for the maximum removal of the MRDye.Extraction

percentage in relation to sorbent dosage was studied to determine optimum pH and equilibration times. The results attained were shown in the **Figure 7.**

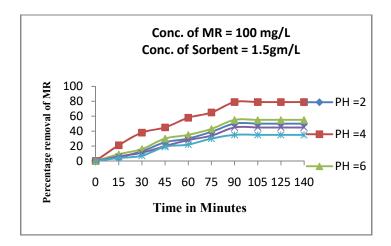
Figure 2:% Removal of MRin relation to equilibration time at a fixed sorbent concentration from powder form of Pomegranate leaves

Figure 3:% Removal of MR in relation to equilibration time at fixed sorbent concentration from ash of Pomegranate leaves

Analysis of MR dye


Following equations were used to determine the percentage removal and the amount of MR adsorbed (mg/g) -

Percentage of Removal (% R) =
$$\frac{\text{Ci-Ce}}{\text{Ci}} \times 100$$


Amount of MR adsorbed (qe) = $\frac{\text{Ci}-}{\text{m}} \times \text{V}$

Where,Ci = Starting MR concentration in mg/L; Ce = Equilibrium concentration of MR solution in mg/L;

m = Adsorbent mass in gm; V = Volume of MR solution in liters

Figure 4:% Removal of MR in relation to equilibration time at a fixed sorbent concentration from bark powder of Pomegranate

Figure 5:% Removal of MRin relation to equilibration time at a fixed sorbent concentration from bark ash of Pomegranate

The above equations were used in the experiments done for determining several physical and chemical characteristics like weight of adsorbent, pH of the MR solution, MR solution strength, and equilibration time, particle size of the adsorbent, temperature and presence of foreign ions.

Effect of Co-Ions (Interfering Ions/Common ions)

 NO_3^- , CO_3^{2-} , SO_4^{2-} , CI^- , PO_4^{3-} , Ca^{2+} , Mg^{2+} , Fe^{2+} , Cu^{2+} and Zn^{2+} are the interfering ions chosen for study were the common ions present in natural water.

MR dye and synthetic mixtures common ions were prepared and the strength of the foreign ion was kept at fivefold excess than the dye strength. 500 mL of this solution was transferred into Stoppard bottles and ideal amount of accurately weighed adsorbents were added. Ideal pH was adjusted with dilute HCl or dilutes NaOH using pH meter. Mechanical shakers were used to shake the samples at regular intervals and small amount of the samples were estimated for MR dye after filtration and extraction percentage was determined.

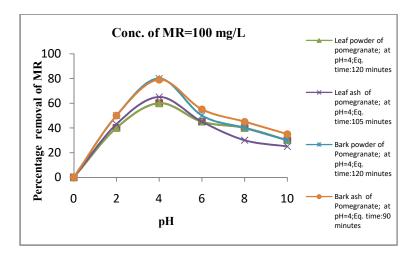


Figure 6:% Removal of Methyl Red at different Ph

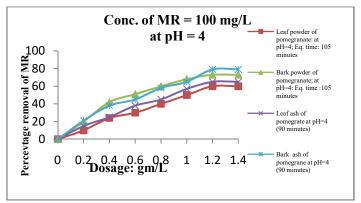


Figure 7:% Removal of Methyl Redin relation to sorbent dosage

Results and Discussion:

The sorbent materials derived from Pomegranate plant were determined in relation to several physicochemical characters like pH, equilibration time and sorption abilities for extractability of MR Figure 2-5, Figure 6 and Figure 7. The results of adsorption isotherm curves, kinetic parameter graphs and adsorption temperature graphs are given in the Tables 1-10.

Table 1: Freundlich Isotherm

S.No.	Name of Sorbent	Intercept	Slope	\mathbb{R}^2
1a	Leaves Powder of Pomegranate (LPOP)	1.0107	0.3616	0.9384
1b	Leaves ash of Pomegranate (LAOP)	1.148	0.3363	0.9945
1c	Bark Powder of Pomegranate (BPOP)	1.0282	0.4077	0.9965
1d	Bark ash of Pomegranate (BAOP)	1.19	0.3821	0.9962

 Table 2: Langmuir Isotherm

Sl. No	Name of Sorbent	$R_{\rm L}$	Slope	Intercept	R ²
2a	LPOP	0.0200	0.0031	0.0634	0.9964
2b	LAOP	0.0267	0.0220	0.0605	0.9872
2c	ВРОР	0.0320	0.0245	0.0811	0.9813
2d	BAOP	0.0219	0.0206	0.0463	0.9832

Table 3: Temkin Isotherm Results of Temkin Isotherm

Sl. No.	Name of Sorbent	b	Slope(B)	Intercept	\mathbb{R}^2
3a	LPOP	43.9127	5.6799	11.915	0.9769
3b	LAOP	36.1421	6.9011	16.668	0.9574
3c	ВРОР	36.8637	6.766	12.775	0.9418
3d	BAOP	32.9489	7.5699	19.329	0.9406

Table 4: Dubinin-Radushkevich

Sl. No.	Name of Sorbent	E	Slope	Intercept	R ²
4a	LPOP	4.0825	3x10 ⁻⁸	0.855	0.816
4b	LAOP	1.000	2x10 ⁻⁷	0.8131	0.501
4c	ВРОР	5.0203	2x10 ⁻⁸	0.859	0.697
4d	BAOP	7.0711	1x10 ⁻⁸	0.907	0.728

Table 5: Pseudo first Order

Sl. No.	Name of Sorbent	$\mathbf{K_1}$	Slope	InterceptResult	\mathbb{R}^2
5a	LPOP	0.0309	0.0134	1.6829	0.9363
5b	LAOP	0.0189	0.0082	1.6646	0.9673
5c	ВРОР	0.0253	0.011	1.7867	0.8616
5d	BAOP	0.0235	0.0102	1.6897	0.982

Table 6: Pseudo Second Order

Sl. No.	Name of Sorbent	K ₂	Slope	Intercept	R ²
6a	LPOP	9.8098x10 ⁻⁵	0.014	1.998	0.925
6b	LAOP	3.6232x10 ⁻⁴	0.020	1.104	0.951
6c	ВРОР	2.0181x10 ⁻⁵	0.007	2.428	0.375
6d	BAOP	1.6866x10 ⁻⁴	0.013	1.002	0.921

Table7: Weber and Morris

Sl. No	Name of Sorbent	\mathbf{K}_{0}	Slope	Intercept	\mathbb{R}^2
7a	LPOP	0.1678	1.112	-2.619	0.986
7b	LAOP	0.2651	0.861	-2.162	0.992
7c	ВРОР	0.1932	1.048	-2.478	0.953
7d	BAOP	0.2938	0.914	-2.059	0.991

Table 8:Bangham's pore diffusion

Sl. No	Name of Sorbent	Slope	Intercept	\mathbb{R}^2
8a	LPOP	4.031	-10.66	0.989
8b	LAOP	4.700	-8.373	0.988
8c	ВРОР	4.437	-12.73	0.961
8d	BAOP	5.212	-7.903	0.991

Table 9: Elovich

Sl. No	Name of Sorbent	A	Slope	Intercept	\mathbb{R}^2
9a	LPOP	1.1294	12.50	-30.05	0.964
9b	LAOP	1.1577	13.76	-28.30	0.963
9c	ВРОР	1.1785	14.10	-35.01	0.887
9d	BAOP	2.1257	15.36	-30.38	0.979

 Table 10: Effect of temperature

Sl. No	Temperature (K)	ΔH(kJ/mol)	ΔS(J/mol/K)	ΔG(kJ/mol)	\mathbb{R}^2
10a	LPOP	18.5402	0.0536	-0.9594	0.975
10b	LAOP	18.4321	0.0573	-0.3623	0.975
10c	ВРОР	21.0178	0.0667	-0.8606	0.985
10d	BAOP	25.9563	0.0845	-1.7597	0.978

The following observations have been reported

Equilibration time

Adsorbent's extractability rises at certain pH with time but at equilibration time, it remains constant indicating the approach of equilibrium state i.e., no further adsorption takes place after certain equilibration time (Figure 2-5).

In LPOP, the percentage removal of MR was found to be 10 % at 15 min, 24.8 % at 30 min 30.0 % at 45 min and 40.0 % at 60 min, 50.0 % at 75 min, 55.5 % at 90 min 60.0% at 105 min or above at pH: 4. Similarly the percentage removal of MR using the bark and ashes of Pomegranate was determined.

pHeffect

Removal of MR was found with respect to pH of the agitating equilibration time for certain adsorbent. Figure 6 shows maximum removal of 35.8 % at pH: 2; 55.5 % at pH: 4; 40.0 % at pH: 6; 35.1 % at pH: 8 and 25.7 % at pH: 10, after an equilibration span of 90 min for LPOP. With the bark powder of pomegranate (BPOP) the percentage of extraction was found to be 50.0 % at pH: 2; 75.2 % at pH: 4; 55.9 % at pH: 6; 45.4% at pH: 8 and 30.0 % at pH: 10 after an equilibration span of 125 min. Similarly the percentage extraction of MR, by using the pomegranate ashes has been studied. The optimum time of equilibration needed for maximum removal of MRwas found to be 90 min at pH: 4, while with the BPOP, the equilibration spanwas found to be 125 min.

Sorbent Concentration

For the maximum extractability of the MR, the optimum sorbent concentration required for leaves and bark powders of Pomegranate was 1.0 gm/500 mL.

Interfering Ions

The consequences of MR extractability in proximity of fivefold overabundance of principal substances found in characteristic waters likeSO₄²-, Cl⁻, CO₃²-, PO₄³-, MR, Ca²⁺, Mg²⁺, Fe²⁺, Cu²⁺ and Zn²⁺, was contemplated and displayed in Table 11. Negatively charged ions showedless impact on extractability rate of MR with the sorbents of current work at the absolute states of equilibration time, pH and sorbent focus.

Table 11: Interfering ions effect on MR extractability with various bio-sorbents: 63 - 99 in the middle of values

	Maximum		% of MR At optimal conditions, fivefold excess of interfering ions extraction. : Conc. of MR: 100 ppm at pH:4									
S.No	Adsorbent and its concentration	Extractability at optimum conditions	SO ₄ ²⁻ %	PO ₄ ³⁻ %	Cl ⁻ %	CO ₃ ²⁻ %	F- %	Fe ²⁺ %	Ca ²⁺ %	Mg ²⁺ %	Cu ²⁺ %	Zn ²⁺ %
11	LPOP: 2.0 g/L	60.0%; pH:4, 105 min	83.0	99.2	92.0	88.9	91.2	86.6	83.4	66.5	89.4	93.0
22	BPOP: 2.0 g/L	75.0%; pH:4, 125 min	92.0	77.5	84.2	87.0	86.0	82.5	67.5	74.0	68.0	63.0
33	LAOP : 1.5 g/L	65.3%; pH:4, 90 min	79.2	81.4	83.7	86.5	85.2	81.3	67.1	73.8	67.6	62.0
44	BAOP: 1.75 g/L	79.0% pH:4, 90 min	92.5	76.2	86.1	78.5	92.1	98.5	68.3	74.0	68.0	63.0

Adsorption Isotherms

Freundlich [21], Langmuir [22], Temkin [23], and Dubinin-Radushkevich [24] are well- acquainted adsorption isotherm models that assessed the relationship combining the MR fixations leavings in the mass answer to estimate MR adsorbed there at situating interface so at given temperature.

Freundlich condition's straight type: $\log (q_e) = \log k_f + \frac{1}{n} \log C_e$

Langmuir equation in linear form; $C_e/q_e = (a_L/k_L)C_e + 1/k_L$

As laid out by Hall et al. [25], adsorption phenomena character was annoyingin R_L > 1, straight in R_L =1, great in 1> R_L >0 and unalterable in R_L =0 alsoLangmuir isotherm model's critical component was identified thru measureless schismfigure, R_L = 1/(1+aLCi). Adsorption isotherms outputs were shown in **Tables 1** and **2**. The closeness of R^2 values to one indicates the materialness of 2 adsorption isotherms affirming adsorbent's diversified surface and MR's single layer possibilityover bio-sorbent. The isotherm state's appropriateness is thought about from the connection coefficient (R^2). Regarding Freundlich isotherm with R^2 = 0.9965 esteem, Langmuir isotherm with R^2 = 0.9964 as well as dimensionless separation figure with R^2 = 0.0200, the link coefficient estimation of leaves, bark dust, and fiery remnants of Pomegranate was determined to be about 0-1. This indicates that Langmuir isotherm is more agreeable than Freundlich isotherm.

Linear form of Temkin equation: $q_e = BlnCe + BlnA$, where RT/b = B

Linear form of Dubinin-Radushkevich equation: $lnq_e = -\beta \epsilon^2 + ln qm$

in which,
$$\varepsilon = RT \ln(1+1/C_e)$$

Tables 3 and **4** exhibit the linear graphs of all these two adsorption isotherms with isothermal constants, as well as the correlation coefficient estimates.

The R^2 - relationship coefficients are close to one. Temkin amiability of sorption, B=7.5699 J/mol was computed from liability of direct plot of Temkin [26, 27], and mean free vitality of Dubinin-Radushkevich $E=\sqrt{(1/2\beta)}$, [28] was found as E=7.0711 KJ/mol. In current extraction investigation E<8 kJ/mol, relates to physical adsorption [29] profuse adsorptions also particle trade. Physical adsorption was called indefiniteadsorption that takes place after long range powerless van der Waals force in the middle of MR and adsorbent. According to Atkins [30], Physical adsorption is nothing but mean free vitality (E) plus sorption warms (B) of lesser than 20 kJ/mol.

Adsorption Kinetics

The rate & energy of MR adsorption here to bio-sorbent acquired in Pomegranate were contrasted to pseudo first-order exhibit [31-32], pseudo second-order exhibit [32-33], Weber and Morris intra-particle dissemination show [34], Bangham's pore dispersion display [35], as well as Elovich state [36-37].

The pseudo 1st-orderequation:log (qe – qt) = $log q_e - \frac{k1}{2.303} \times t$

The pseudo 2^{nd} -order equation: $t/qt = \frac{1}{k2qe2} + (1/qe)t$

Weber & Morris diffusion equation for intraparticle: $q_t = k_{ip}t^{1/2} + c$

Bangham's pore diffusion equation: $\log \left[\log \left(C_i / C_i - q_t m \right) \right] = \log \left(ko / 2.303 \text{V} \right) + \alpha \log \left(t \right)$

Elovich equation: $q_t = 1/\beta \ln(\alpha\beta) + 1/\beta \ln(t)$

Graphs of the above said dynamic models, rate constants and correlation coefficients were displayed in **Tables 5-9.**Among the five dynamic models, leaves, bark powder ash of Pomegranate's R^2 determination for Weber and Morris is $R^2 = 0.991$, Bangham's pore dispersion is $R^2 = 0.991$ pseudo first-arrange is $R^2 = 0.982$, pseudo secondarrange is $R^2 = 0.951$ and Elovich demonstrate is $R^2 = 0.979$.

Effect of Temperature

By administering the extraction experiments at various temperatures of 298, 308, 318, and 328 K at absolute extraction states, the influence of temperature upon that MR's percent evaluation MR was studied: pH - 4.0; sorbent measurement - 3.0 mg/L; contact time - 90 min; particle determiner - 45 work; MR colour arrangement mixing - 100 mg/L; results plotted as ln(Kd) Vs 1/T as shown in **Figure 8**.

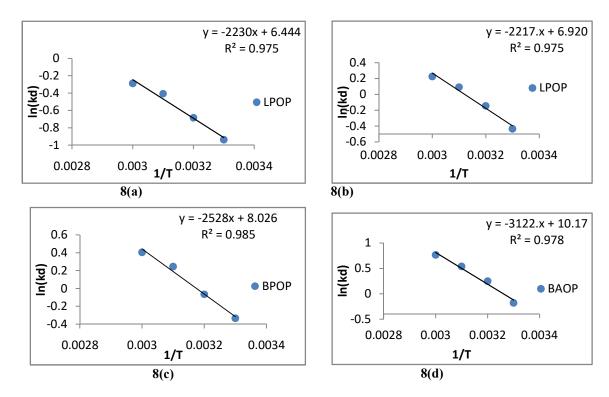


Figure 8 Effect of temperature

Thermodyanamic characters of the adsorption method, like variation in free vitality (ΔG) kJ/mole, enthalpy variation - ΔH kJ/mole also entropy variation - ΔS KJ/mole too were found in varyingbyusing the conditions [38-40].

$$\Delta G = -RT \ln K_d$$

$$\ln K_d = \Delta S/R - \Delta H/RT$$

$$K_d = q_e/C_e$$

 $\Delta G = \Delta H - T \Delta S$

Here, Kd - dissemination adsorption coefficient, q_e - amount of MR adsorbed on adsorbent per lit. of deposition at harmony, C_e - the MR colour deposition's steadiness centralization, T - outright temperature in Kelvin and R - the gas steady.

 ΔG , ΔH and ΔS are the adaptations in free vitality, enthalpy and entropy.

The approximations of ΔH and ΔS were obtained from slope and apprehend of a plot in the middle of ln(Kd) and 1/T and ΔG characters were acquired from the relation $\Delta G = \Delta H$ -T ΔS and classified [41-42]. It has been observed that with rise in temperature from 298-328K, 25-55°C, maximum extraction of MR takes place at 328K.

The results shown in Table 10, indicates that the determinations of ΔH are possible, thereby illustrates the physical sorption and endothermic nature of adsorption [43]. Endothermic nature of adsorption process is shown by the 2 values close to one. The constructive determinations of ΔS illustrate enlarge matter and deformity at the powerful ordering interface of MR colour with adsorbent [44,45]. The obstruction findings of ΔG show that the adsorption method's spontaneous process indicates that the adsorptive strength is sufficiently solid to overcome the potential impediment [46,47].

Applications of the developed Bio-Sorbents

The acceptability of the strategies generated with the latest bio-sorbents obtained from Pomegranate for expelling MR dye in waste waters, was tried with few authentic sewage/emanating tests of a small number of businesses. At that moment the samples were exposed to withdrawal of the colour using the bio-sorbents generated as a segment of present study at absolute states of extraction. The end results acquired were exhibited in **Table 12**.

	Table 12 %	Removal of MR	from effluviumusii	ng bio-sorbents	proceeded in curren	t work 80 - 90 middlevalues
--	-------------------	---------------	--------------------	-----------------	---------------------	-----------------------------

	% Removal of MeR in varied samples					
Bio-Sorbents	Sample -1 Delivered with 10.0 ppm MR dye	Sample -2 Delivered with 15.0 ppm MR dye	Sample -3 Delivered with 20.0 ppm MR dye	Sample -4 Delivered with 25.0 ppm MR dye	Sample -5 Delivered with 30.0 ppm MR dye	Sample -6 Delivered with 35.0 ppm MR dye
Powder of Pomegranate leaves: 2.0 g/L	83.5%	89.1%	86.5%	88.3%	87.4%	82.1%
Powder of Pomegranate bark: 2.0 g/L	89.1%	88.2%	85.2%	86.4%	88.2%	85.5%
Ashes of Pomegranateleaves: 1.75g/L	88.5 %	82.3%	86.4%	81.5%	85.3%	84.6%
Ashes of Pomegranate bark: 1.5 g/L	86.3%	86.5%	84.4%	88.3%	89.5%	83.5%

Conclusion:

The circumstances for the majority uttermost removal of MR at lowest measurement and time of equilibration were upgraded. At pH: 4 the leaves and bark of Pomegranatehave shown reasonable bias MR. Sorbent quantity and time needed for greatest expulsion of MR is low for the blazing leftovers than with the raw powder of the plant substances. Fivefold abundance of normal negative ions found in common waters, haven't interfere the withdrawal of MR at absolute conditions of pH, equilibration time and sorbent focus. Cations like Ca^{2+} , Mg^{2+} and Cu^{2+} have illustrated little obstruction, whereas Fe^{2+} and Zn^{2+} have collectively shown the most extreme removal of the colour.

The four Isotherms, the interconnection coefficient determination of leaves, bark powders and fiery debris of Pomegranate for the large interconnection coefficient for Freundlich isotherm esteem, Langmuir isotherm and indefinite splitting calculateisperceivedas a part in0-1 span, illustrate the favourability of Langmuir isotherm upon Freundlich isotherm. The five dynamic models, Weber and Morris' interconnectivity coefficient determination for leaves, bark powders, with fiery remnants of Pomegranate, and Bangham's pore dispersion exhibit pseudo first-

order, pseudo second-order, and Elovich displays, respectively. It illustrates that pseudo second-order model is preeminently suited to the examined data of the current contemplate adsorption substructure. The determinations of ΔH are definite; this displays endothermic character and physical sorption of adsorption. The R² readings close to, demonstrate the endothermic character of adsorption process. The productive determinations of ΔS make evident the endothermic character in MR colour's tough ordering interface with adsorbent.

Acknowledgments

Every author is thankful to Acharya Nagarjuna University, Andhra Pradesh, India for constant support and encouragement. The first author also thank Prof. Ravindranath, K.L.University, Guntur for encouragement.

References:

- 1. A. Bhatnagar and AK Jain. A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. *J. Colloid. Interf. Sci.*, 2005, **281**: 49-55.
- 2. KG Battacharyya and A Sharma. Kinetics and Thermodynamics of Methylene blue adsorption on neamleaf powder. *Dyes Pigm.*, 2005, **65**: 51-59.
- 3. T Robinson, B Chandran and P Nigam. Studies on the production of enzymes by white-rot fungi for the decolourisation of textile Dye. *Enzyme Microb. Technol.*, 2001, **29**: 575–579.
- 4. V Shah and F Nerud. Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. *Can. J. Microbiol.* 2002, **48**: 857–870.
- 5. SYM Josefa and E De Oliveri. Heavy metals removal in industrial effluents by sequential adsorption treatment. *Adv Environ Res.*, 2003, 7: 263-72.
- 6. DJ Malik, VJ Strelko, M Streat and AM Puziy. Characterization of novel modified active carbons and marine algal biomass for the selective adsorption of lead. *Water Res.*, 2002, **369**: 1527-1538.
- 7. FN Arslanoglue, F Kar and N Arslan. Adsorption of dark coloured compounds from peach pulp by using powdered activated carbon. *J. Food Eng.*, 2005, **71**: 156-163.
- 8. S Senthi Kumar, PR Varadarajab, K Pakordi and CV Subbhuraam. Adsorption of methylene blue onto Jute FiberCarbon: Kinetics and equilibrium Studies. *J. Colloid Interface Sci.*, 2005, **284**: 78-82.
- 9. JA Laszlo. Preparing an ion exchange resin from sugarcane bagasse to remove reactive dye from wastewater. *Text. Chem. Color.*, 1996, **28**: 13-17.
- 10. AH Gemea, IA Mansour, RG El-Sharkawy and AB Zaki. Kinetics and mechanism of the heterogeneous catalyzed oxidative degradation of indigo carmine. *J Mol Catal A Chem.*, 2003, **193**: 109–120.
- 11. VL Grimau and MC Gutierrez. Decolorization of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light. *Chemosphere*. 2006, **62**: 106-112.
- 12. C Hachem, F Bocquillon, O Zahraa, and M Bouchy. Decolorization of textile industry Wastewater by the photocatalytic degradation process. *DyesPigm.*, 2001, **49**: 117-125.
- 13. RL Cisneros, AG Espinoza and MI Litter. Photodegradation of an azo dye of the textile industry. *Chemosphere*, 2002, **48**: 393-399.
- 14. VK Gupta and Suhas. Application of low-cost adsorbents for Dye removal-a review. *J. Environ. Manage.* 2009, **90**: 2313-2342.
- 15. V Srivastava, ID Mall and IM Mishra. Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. *Chem. Eng. J.* 2006, **117**: 79-91.
- 16. RK Trivedy. Environmental Publications. Pollution Management in Industries 2nd ed. Karad (India). 1995.
- 17. K Gerard. Environmental Engineering. McGraw-hall International Editions. 1998.
- 18. Metcalf and Eddy. Wastewater Engineering Treatment and Reuse. 4th ed. NewYork: McGraw Hill Co. 2003.
- 19. APHA. Standard methods for the examination of water and waste water. 16th ed. American Public Health Association Washington DC. 1985.

- 20. B Srinivasa Reddy,K Venkata Ramana and K Ravindranath,Extraction of Methylene blue dye from polluted waters using some Bio-Adsorbents. *Int. J. Appli. Bio. and Pharm. Tehc.*, 2012, **3**: 215-224.
- 21. HMF Freundlich.Over the ddsorption in solution. J. Phys. Chem., 1906, 57: 385-471.
- 22. I Langmur. The adsorption of gases on plane surfaces of glass, mica and platinum. *J. Am. Chem. Soc.* 1918, **40**: 1361-1368.
- 23. MJ Temkin and V Pyzhev. Recent modifications to Langmuir isotherms. *ActaPhysiochim*. URSS. 1940, **12**: 217-222.
- 24. MM Dubinin and LVR adush Kevich. Equation of the Characteristic Curve of Activated Charcoal. *Proc. acad. sci. USSR. Phys. chem. sect.* 1947, **55**: 331-333.
- 25. KR Hall, LC Eagleton, A Acrivo, and TVermevlem. Pore and solid diffusion kinetics in fixed bed adsorption under constant pattern conditions. *Ind. Eng. Chem. Fundam.*, 1966, **5**: 212-219.
- 26. BH Hameed. Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. *J. Hazard. Mater.*, 2009, **162**: 939-944.
- 27. A Nunes, SA Franca and LS Olievera. Activated carbon from waste biomass: An alternative use for biodiesel production solid residues. *Bioresour. Technol.*, 2009, **100**:1786-1792.
- 28. MS Onyango, Y Kojima, OAoyi, EC Bernardo and H Matsuda. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9.*J. Colloid Interface. Sci.*, 2004, **279**: 341-350.
- 29. J Monika, VGarg and K Kadirvelu. Chromium(VI) removal from aqueous system using *Helianthus annuus* (sunflower) stem waste. *J. Hazard. Mater.* 2009, **162**: 365-372.
- 30. P Atkins. *Physical chemistry*. 6th ed. Oxford University Press, London. 1999; 857-864.
- 31. S Lagergren. Zurtheorie der sogenannten adsorption gelosterstoffe, Kungliga venska Vetenskapsakademiens. *Handlingar.* 1898, **24**: 1-39.
- 32. YS Ho and G McKay. Pseudo-second order model for sorption processes. *ProcessBiochem.* 1999, **34**:451-465.
- 33. YS Ho, JCY Ng, and G McKay. Kinetics of pollutant sorption by biosorbents: Review. *Sep. Purif. Methods.* 2000, **29**: 189-232.
- 34. WJ WeberJr, and JC Morris and J Sanit. Kinetics of Adsorption on Carbon from Solution. *J. Sanit. Eng. Div. ASCE*1963; 89, 31-59.
- 35. CAharoni and M Ungarish.Kinetics of activated chemisorption. Part 2.- Theoretical models. J. Chem. Soc. Faraday Trans. 1: Phys Chem Condens Phases. 1977, 73: 456-464.
- 36. M Ozacar and IA Sengil.A kinetic study of metal complex dye sorption onto pine sawdust. *Process Biochem*. 2005, **40**: 565-572.
- 37. C Gerente, VKC Lee, P Cloirec and G Le. McKay. Application of chitosan for the removal of metals from wastewaters by adsorption—Mechanisms and Models Review. *Crit. Rev. Env. Sci. Tec.*, 2007, **37**: 41-127.
- 38. G AlagumuthuandMRajan. Kinetic and equilibrium studies on fluoride removal by zirconium (IV): impregnated groundnut shell carbon. *Hem Ind.* 2010, **64**: 295-304.
- 39. G Karthikeyan and SS Ilango. Fluoride sorption using morringa indica-based activated carbon. *Iran. J. Environ. Health. Sci. Eng.* 2007, **4**:21-28.
- 40. M Sekar, V. Sakthi and S Rengaraj. Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. *J Colloid. Interface Sci.*, 2004, **279**: 307-313.
- 41. M Horsfall and A Spiff. Effects of temperature on the sorption of Pb²⁺ and Cd²⁺ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. *Electron.J.Biotechnol.* 2005;**8**, 162-169.
- 42. N Viswanathan and S Meenakshi. Enriched fluoride sorption using alumina/chitosan composite. *J. Hazard. Mater.* 2010; **178**, 226-232.
- 43. Z Bouberka. S. Kacha, M. Kamecha. S Elmaleh, and Z Derriche. Sorption study of an acid dye from an aqueous solutions using modified clays. *J. Hazard. Mater.*, 2005, **119**: 117-124.

- 44. K Venkata Ramana, K. Swarna Latha, K. Ravindranath and B. Hari Babu Methyl Red dye removal using New Bio-Sorbents derived from *Hyacinth and Tinospora Cordifolia* plants from waste waters. *Rasayan J. Chem.*, 2017, **10:** 349-362.
- 45. CS Sundaram, N Viswanathan and S Meenakshi. Defluoridation of water using magnesia/chitosan composite. *J. Hazard. Mater.* 2009, **163**: 618-624.
- 46. MJ Iqbal and MN Ashiq. Adsorption of dyes from aqueous solutions on activated charcoal. *J. Hazard. Mater.*, 2007, **139**: 57-77.
- 47. AK Chaturvedi, KC Pathak and VN Singh. Fluoride removal from water by adsorption on china clay. *Appl. Clay Sci.*, 1988, **3**: 337-346.