

Hankel type transform on a Gevrey type space

Authors & Affiliation:

B.B.Waphare

MAEER's MIT Arts, Commerce & Science College, Alandi, Pune, India.

balasahebwaphare@gmail.com

KEY WORDS:

Hankel type transform, Hankel type translation, Hankel type convolution, Gevrey spaces..

Abstract:

In this paper we give a completion for the distributional theory of Hankel type transformation developed in [6] and [8]. The space H_w generalizing the Altenburg space H is defined. Some properties of this space are studied. It is shown that the Hankel type transformation $h_{\alpha,\beta}$ is an automorphism of H_w . The generalized Hankel type transform of Gevrey spaces is defined and it is found that Hankel transform is an automorphism of H'_w . Product on H_w , Hankel type translation and Hankel type convolution on H_w are investigated.

Corresponding Author:

B.B.Waphare

© 2015.The Authors. Published under **Caribbean Journal of Science and Technology**

ISSN 0799-3757

<http://caribjscitech.com/>

2000 mathematics subject classification : 46 F 12, 46 F05.

1. Introduction : The space $L^p_{\alpha,\beta}$, $1 \leq p < \infty$, consists of all those measurable functions ϕ on $I = (0,\infty)$ such that

$$
\|\phi\|_{L^p_{\alpha,\beta}} = \left(\int_0^\infty |\phi(x)|^p \, dv(x)\right)^{1/p} < \infty,\tag{1.1}
$$

where $L^{\infty}_{\alpha,\beta}$ denotes the space of those functions ϕ for which

$$
\|\phi\|_{L^p_{\alpha,\beta}} = \operatorname{ess}_{x \in I} \ell.u.\mathbf{b} \,|\phi(x)| < \infty. \tag{1.2}
$$

Note that

$$
dv(y) = \frac{y^{4\alpha}}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} dy.
$$
 (1.3)

The Hankel type transformation of $\phi \in L^1_{\alpha,\beta}(I)$ is defined by

$$
\left(h_{\alpha,\beta}\phi\right)(x) = \int_0^\infty j_{\alpha-\beta}(xy)\,\phi(y)\,d\nu(y),\ x \in I,\tag{1.4}
$$

where

 $j_{\alpha-\beta}(x) = x^{-(\alpha-\beta)} J_{\alpha-\beta}(x)$ and $J_{\alpha-\beta}(x)$ represent the Bessel type function of the first kind and order $(\alpha - \beta)$.

Throughout this paper we shall assume that $(\alpha - \beta) \ge -1/2$.

Since $z^{-(\alpha-\beta)}J_{\alpha-\beta}(z)$ is bounded on I, the Hankel type transform $h_{\alpha,\beta}(\phi)$ is bounded on I. The inversion for (1.4) is given by

$$
\phi(y) = \int_0^\infty j_{\alpha-\beta} (xy) \left(h_{\alpha,\beta} \phi \right) (x) \, d\nu(x) \, , \, y \in I. \tag{1.5}
$$

G. Altenburg [1] introduced the space *H* that consist of all those complex valued and smooth function ϕ defined on *I*, such that for every $m, n \in \mathbb{N}_0$.

$$
\rho_{m,n}(\phi) = \sup_{x \in I} (1 + x^2)^m |(x^{-1} D)^n \phi(x)| < \infty,\tag{1.6}
$$

when H is endowed with the topology associated with the family $\{\rho_{m,n}\}_{m,n\,\in\,\mathbb{N}_0}$ of seminorms, H is a Frechet space and the Hankel type transformation $h_{\alpha,\beta}$ is an automorphism of H, [1]. The Hankel type transform is defined on H', the dual space of H, as the transpose of $h_{\alpha,\beta}$ on H and is defined by $h'_{\alpha,\beta}$. That is if $f \in H'$, then the Hankel type transform $h'_{\alpha,\beta} f$ of f is the element of H' defined by

$$
\langle h'_{\alpha,\beta} f, \phi \rangle = \langle f, h_{\alpha,\beta} \phi \rangle, \quad \phi \in H.
$$

If $f \in L^p_{\alpha,\beta}$ then f defines an element of H' through

$$
\langle f, g \rangle = \int_0^\infty f(x) g(x) \, dv(x), \ g \in H. \tag{1.7}
$$

Thus, $L_{\alpha,\beta}^p$ can be seen as a subspace of H'. The convolution associated to the $h_{\alpha,\beta}$ – transformation is defined as follows:

The Hankel type convolution $f \#_{\alpha,\beta} g$ of order $(\alpha - \beta)$ of the measurable functions $f, g \in L^1_{\alpha,\beta(1)}$ is given through

$$
\left(f \#_{\alpha,\beta} g\right)(x) = \int_0^\infty f(y) \left(\underset{\alpha,\beta}{\tau_x} g\right)(y) \, dv\left(y\right),\tag{1.8}
$$

where the Hankel type translation operator $\alpha_{\beta} \tau_x$ g of g is defined by

$$
\left(\begin{array}{cc}a_{\beta}\tau_{x} & g\end{array}\right)(x) = \int_{0}^{\infty} g(z) D_{\alpha,\beta}(x,y,z) \, dv(z) \tag{1.9}
$$

provided that the above integrals exist. Here $D_{\alpha,\beta}$ is the following function

$$
D_{\alpha,\beta}(x,y,z) = \int_0^\infty j_{\alpha-\beta}(xt) j_{\alpha-\beta}(yt) j_{\alpha-\beta}(zt) dv(t)
$$
 (1.10)

and we have the following basic formula

$$
\int_0^\infty j_{\alpha-\beta}(zt) D_{\alpha,\beta}(x,y,z) dv(z) = j_{\alpha-\beta}(xt) j_{\alpha-\beta}(yt).
$$
 (1.11)

Lemma 1.1: Let f and g be functions on $L^1_{\alpha,\beta}(I)$, then

(i)
$$
(h_{\alpha,\beta}(a_{,\beta}\tau_x f))(y) = j_{\alpha-\beta}(xy)(h_{\alpha,\beta}f)(y),
$$

\n(ii) $(h_{\alpha,\beta}(f \#_{\alpha,\beta} g))(y) = (h_{\alpha,\beta}f)(y)(h_{\alpha,\beta}g)(y).$

Proof: (i) As $({}_{\alpha,\beta}\tau_x f)(y) = \int_0^\infty f(z) D_{\alpha,\beta}(x, y, z) dv(z)$. 0

We therefore have

$$
\left(h_{\alpha,\beta}\left(\alpha_{\alpha,\beta}\tau_{x}f\right)\right)(y) = \int_{0}^{\infty} j_{\alpha-\beta}(yt)\left(\alpha_{\beta}\tau_{x}f\right)(t) \, dv \,(t)
$$
\n
$$
= \int_{0}^{\infty} j_{\alpha-\beta}(yt) \, dv \,(t) \int_{0}^{\infty} f(z) \, D_{\alpha,\beta}(x,t,z) \, dv \,(z)
$$
\n
$$
= \int_{0}^{\infty} f(z) \, dv \,(z) \int_{0}^{\infty} j_{\alpha-\beta}(yt) \, D_{\alpha,\beta}(x,t,z) \, dv \,(t).
$$

Using (1.11), we have

$$
\left(h_{\alpha,\beta}\left(\alpha_{\beta}\tau_{x}f\right)\right)(y) = \int_{0}^{\infty} f(z) j_{\alpha-\beta}(xy) j_{\alpha-\beta}(zy) dv(z)
$$

$$
= j_{\alpha-\beta}(xy) \int_{0}^{\infty} j_{\alpha-\beta}(zy) f(z) dv(z)
$$

$$
= j_{\alpha-\beta} (xy) (h_{\alpha,\beta} f) (y).
$$
 (1.12)

(ii) Proof follows from [5, p.339].

Thus proof is completed.

2. The Space H_w **:** Following G. Bjorck [4], we consider continuous, increasing and non-negative functions w defined on I, such that $w(0) = 0$, $w(x) > 0$ and it satisfies the following three properties :

(i)
$$
w(x + y) \le w(x) + w(y), x, y \in I
$$
 (2.1)

(ii)
$$
\int_0^\infty \frac{w(x)}{1+x^2} dx < \infty
$$
 (2.2)

and

(iii)
$$
w(x) \ge a + b \log(1 + x)
$$
, for some $a \in R$ and $b > 0$. (2.3)

The class of all such w functions is denoted by M. Note that if w is extended to ℝ as an even function then w satisfies the subadditivity property

(i) for every $x, y \in \mathbb{R}$..

A. Beurling [3] developed the foundations of a general theory of distributions that extends the Schwartz theory. Some aspects of that theory were presented and completed by Bjorck [4]. Now we collect some definitions and properties for the purpose of the present paper.

A function $\phi \in L^1_{\alpha,\beta}(I)$ is in H_w when ϕ is smooth function and every , $n \in \mathbb{N}_0$,

$$
\eta_{m,n}(\phi) = \sup_{x \in I} e^{m w(x)} |(x^{-1} D)^n \phi(x)| < \infty. \tag{2.4}
$$

On H_w we consider the topology generated by the family $\{\eta_{m,n}\}_{m,n \in \mathbb{N}_0}$ of seminorms. H_w is clearly a linear space. Following [2], we conclude that H_w is a Frechet space. For,

 $w(x) = \log(1 + x^2)$ it reduces to H and for $w(x) = x^p(0 < p < 1)$, H_w is a Gevrey space. From definitions (1.6), (2.4) and the inequality $(1 + x^2) \le e^{w(x)}$, it follows that $H_w \subseteq H$. It is clear that $D(I) \subset H_w(I) \subset$ E (I). Since D (I) is a dense subspace of $E(I)$, then $H_w(I)$ is dense in $E(I)$. Hence $E'(I) \subset H'_w(I)$ the dual of H_w (I). Since $H_w \subset H$ the following properties given in [2,5] hold in the present case also when $w \in M$. The Bessel type operator defined by

$$
\Delta_{\alpha,\beta} = x^{-4\alpha} D x^{4\alpha} D = D^2 + \frac{4\alpha}{x} D.
$$

By an application of Bessels equation for t fixed, we have

$$
\Delta_{\alpha,\beta} j_{\alpha-\beta} (xt) = -t^2 j_{\alpha-\beta} (xt).
$$

Theorem 2.1: (i) The Hankel type transformation $h_{\alpha,\beta}$ is an automorphism of H_w .

(ii) The generalized Hankel type transformation $h'_{\alpha,\beta}$ is an automorphism of H'_{w} .

Proof: Here we prove (i) first and (ii) can be proved in a similar way.

As Hankel type transformation $H_{\alpha,\beta}$ is defined by

$$
\left(H_{\alpha,\beta}\,\phi\right)(x) = \int_0^\infty (xy)^{\alpha+\beta} \, J_{\alpha-\beta}\left(xy\right) \phi(y) \, dy, \ \ x \in I,\tag{2.5}
$$

we have

$$
(h_{\alpha,\beta} \phi)(x) = \int_{0}^{\infty} j_{\alpha-\beta} (xy) \phi(y) dv(y)
$$

=
$$
\frac{1}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} \int_{0}^{\infty} (xy)^{-(\alpha-\beta)} J_{\alpha-\beta} (xy) \phi(y) y^{4\alpha} dy
$$

$$
= \frac{1}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} \int_{0}^{\infty} (xy)^{(\alpha+\beta)} J_{\alpha-\beta} (xy) (xy)^{2\beta-1} \phi (y) y^{4\alpha} dy
$$

$$
= \frac{1}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} x^{2\beta-1} \int_{0}^{\infty} (xy)^{\alpha+\beta} J_{\alpha-\beta} (xy) (y^{2\alpha} \phi) (y) dy
$$

$$
= \frac{1}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} x^{2\beta-1} H_{\alpha,\beta} (y^{2\alpha} \phi) (x)
$$
 (2.6)

Using relation (2.6), we have

$$
(1 + x2)m (x-1D)n (h\alpha,\beta \phi) (x)
$$

= $\frac{1}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)}$ (1 + x²)^m (x⁻¹D)ⁿ x^{2\beta-1} H_{\alpha,\beta} (y^{2\alpha} \phi).

Following technique of Zemanian [9, p.141], we can write

$$
(1+x^2)^m |(x^{-1}D)^n (h_{\alpha,\beta} \phi)(x)|
$$

= $\frac{1}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} \left| \int_0^\infty \frac{(1+y^2)^{2(\alpha-\beta)+m+2n+1} (y^{-1}D)^n y^{2\beta-1}}{(y^{3\alpha+\beta} \phi)(y) [(xy)^{-(\alpha-\beta)-n} J_{\alpha-\beta+m+n} (xy)] dy \right|$.

From (ii) it follows that to every $\epsilon > 0$, there exist a constant $c(\epsilon)$ such that

 $w(\xi) \leq \epsilon \xi + c(\epsilon)$, so that

$$
e^{\nu w(\xi)} < e^{\nu c(\epsilon)} \sum_{m=0}^{\infty} \frac{(\nu \epsilon)^m}{m!} \xi^m \leq e^{\nu c(\epsilon)} \sum_{m=0}^{\infty} \frac{(\nu \epsilon)^m}{m!} (1 + \xi^2)^m.
$$

Now, for any choice ν and n , we have

$$
\eta_{\nu,n}\left(h_{\alpha,\beta}\phi\right)=\underset{\xi\in I}{Sup\,}e^{\nu\,w(\xi)}\big|\,(\xi^{-1}D)^n\left(h_{\alpha,\beta}\phi\right)(\xi)\big|
$$

$$
\leq \underset{\xi \in I}{Sup \, e^{\nu c(\epsilon)}} \sum_{\substack{\kappa \in I}}^{\infty} \frac{(\nu \epsilon)^m}{m!} (1 + \xi^2)^m |(\xi^{-1}D)^n (h_{\alpha,\beta} \phi)(\xi)|
$$

$$
\leq \underset{\xi \in I}{Sup \, e^{\nu c(\epsilon)}} \left| \sum_{\substack{\kappa \in I}}^{\infty} \frac{(\nu \epsilon)^m}{m!} \frac{1}{2^{\alpha-\beta} \Gamma(3\alpha+\beta)} \right|
$$

$$
\times \int_{0}^{\infty} (1 + \gamma^2)^{2(\alpha-\beta)+m+2n+1} (\gamma^{-1}D)^m \phi(\gamma) [(\xi \gamma)^{-(\alpha-\beta)-n} J_{\alpha-\beta+m+n} (\xi \gamma) d\gamma] \right|
$$

Since

1 $\frac{1}{2^{\alpha-\beta}\Gamma(3\alpha+\beta)} (\xi y)^{-(\alpha-\beta)-n} J_{\alpha-\beta+m+n} (\xi y)$ is bounded by $Q_{\alpha,\beta}$, for $(\alpha-\beta) \geq -\frac{1}{2}$ $\frac{1}{2}$, so that

$$
\eta_{\nu,n} \left(h_{\alpha,\beta} \phi \right) \leq Q_{\alpha,\beta} e^{\nu c(\epsilon)} \sum_{m=0}^{\infty} \frac{(\nu \epsilon)^m}{m!} \sup_{y \in I} (1 + y^2)^{2(\alpha - \beta) + m + 2n + 2}
$$

$$
\times |(y^{-1} D)^m \phi(y)| \int_0^{\infty} \frac{dy}{1 + y^2}
$$

$$
\leq Q_{\alpha,\beta} e^{\nu c(\epsilon)} \sum_{m=0}^{\infty} \frac{(\nu \epsilon)^m}{m!} \gamma_2 \left(\alpha - \beta + \frac{m}{2} + n + 1 \right), m(\phi) \right) < \infty,
$$

as infinite series can be made convergent for $m \geq 1$, by choosing

$$
\epsilon
$$
 < v^{-1} ($\gamma_2(\alpha - \beta + m/2 + n + 1), m(\phi)$)^{-1/m}

This proves that $(h_{\alpha,\beta}\phi)$ is also in H_w and that $h_{\alpha,\beta}$ is continuous linear mapping from H_w into itself. Since $H_w \subset L^1_{\alpha,\beta}(I)$ for $(\alpha - \beta) \ge -1/2$, we can apply inversion theorem and also the fact that $h^{-1}_{\alpha,\beta} = h_{\alpha,\beta}$ to this case and conclude that $h_{\alpha,\beta}$ is an automorphism on H_w . Thus proof is completed.

.

Now the generalized Hankel type transformation $h'_{\alpha,\beta}$ on H'_{w} is defined as adjoint of $h_{\alpha,\beta}$ on H_{w} . More specifically, for any $\phi \in H_w$ and $\psi \in H'_w$ we have

$$
\langle h'_{\alpha,\beta}\psi,\phi\rangle=\langle\psi,h_{\alpha,\beta}\phi\rangle.
$$

3. Product, Hankel type translation and Hankel type convolution on I:

We shall denote by Λ_m the space of all C^∞ function $\phi(x)$, $x \in I$, and that $m \in \mathbb{N}_0$ and there exists a $\lambda =$ $\lambda(m) \in \mathbb{N}_0$ for which

$$
e^{-\lambda w(x)}\left|\left(x^{-1}D\right)^m\phi(x)\right|<\infty\tag{3.1}
$$

Here Λ is the space of multipliers for H_w .

Theorem 3.1: If ϕ , $\psi \in H_w(I)$, then $\phi \psi \in H_w(I)$.

Proof: For $k, n \in \mathbb{N}_0$, we have by definition (2.4)

$$
\eta_{k,n}(\phi\psi)(x) = \sup_{x \in I} e^{kw(x)} |(x^{-1}D)^n \phi(x) \psi(x)|.
$$

Using Leibnitz theorem, we have

$$
\eta_{k,n}(\phi\psi)(x)
$$
\n
$$
= \sup_{x \in I} e^{k w(x)} \left| \sum_{\nu=0}^{n} {n \choose \nu} (x^{-1}D)^{n-\nu} \phi(x) (x^{-1}D)^{\nu} \psi(x) \right|
$$
\n
$$
= \sum_{\nu=0}^{\infty} {n \choose \nu} \sup_{x \in I} e^{k w(x)} |(x^{-1}D)^{n-\nu} \phi(x)| \left| \sup_{x \in I} (x^{-1}D)^{\nu} \psi(x) \right|
$$
\n
$$
= \sum_{\nu=0}^{n} {n \choose \nu} \eta_{k,n-\nu} \phi(x) \eta_{0,\nu} \psi(x) < \infty.
$$

Hence $\phi \psi \in H_w(I)$. This completes the proof of theorem.

Theorem 3.2: The mapping $\phi \mapsto \alpha_{\beta} \tau_x \phi$ is continuous from H_w into itself.

Proof: Let $\phi \in H_w$ (*I*). Then $h_{\alpha,\beta}$ $\phi \in H_w$ (*I*). By Lemma 1.1(i), we have

$$
h_{\alpha,\beta}\left(\alpha_{,\beta} \tau_{x}\right)(y) = j_{\alpha-\beta}\left(xy\right)\left(h_{\alpha,\beta} \phi\right)(y).
$$

Now we show that

$$
j_{\alpha-\beta}(xy) \in \Lambda_m.
$$

We have

$$
(y^{-1}D)^m \left(j_{\alpha-\beta} (xy) \right) = (y^{-1}D)^m \left((xy)^{-(\alpha-\beta)} J_{\alpha-\beta} (xy) \right)
$$

= (-1)^m x^{2m} (xy)^{-(\alpha-\beta)-m} J_{\alpha-\beta+m}(xy).

 $|(y^{-1}D)^m i_{\alpha-\beta}(xy)| \leq Q_{\alpha,\beta} x_0^{2m}$, so that there exists $\lambda > 0$ such that

 $\left|e^{-\lambda w(y)}(y^{-1}D)^m j_{\alpha-\beta}(xy)\right| < \infty$, for every $x \in I$.

Here $j_{\alpha-\beta}(xy) \in \Lambda_m$ for fixed $x \in I$. But $(h_{\alpha,\beta} \phi)(y) \in H_w$, then $j_{\alpha-\beta}(xy)$ $h_{\alpha,\beta} \phi(y) \in H_w$. Since $h_{\alpha,\beta}$ is an automorphism of H_w , we have ${}_{\alpha,\beta}\tau_x \phi \in H_w$ and the mapping $\phi \mapsto {}_{\alpha,\beta}\tau_x \phi$ is continuous from H_w into itself.

Theorem 3.3: If , $g \in H_w(I)$, then $f \#_{\alpha,\beta} g \in H_w(I)$.

Proof: By definition (2.4), we have

$$
\eta_{k,n}\left(h_{\alpha,\beta}\left(\phi\#_{\alpha,\beta}\psi\right)\right)(x)=\sup_{x\in I}e^{kw(x)}\left|\left(x^{-1}D\right)^{n}h_{\alpha,\beta}\left(\phi\#_{\alpha,\beta}\psi\right)\right|.
$$

Using Lemma 1.1 (ii), we have

$$
\eta_{k,n} \left(h_{\alpha,\beta} \left(\phi \#_{\alpha,\beta} \psi \right) \right) (x) = \sup_{x \in I} e^{kw(x)} \left[(x^{-1}D)^n \left(h_{\alpha,\beta} \phi \right) (x) \left(h_{\alpha,\beta} \psi \right) (x) \right]
$$

\n
$$
= \sup_{x \in I} e^{kw(x)} \sum_{\nu=0}^n {n \choose \nu} \left[(x^{-1}D)^{n-\nu} \left(h_{\alpha,\beta} \phi \right) (x) \left(x^{-1}D \right)^\nu \left(h_{\alpha,\beta} \psi \right) (x) \right]
$$

\n
$$
= \sum_{\nu=0}^n {n \choose \nu} \sup_{x \in I} e^{kw(x)} \left[(x^{-1}D)^{n-\nu} \left(h_{\alpha,\beta} \phi \right) (x) \right] \left| \sup_{x \in I} (x^{-1}D)^{\nu} \left(h_{\alpha,\beta} \psi \right) (x) \right|
$$

\n
$$
= \sum_{\nu=0}^n {n \choose \nu} \eta_{k,n-\nu} \left(h_{\alpha,\beta} \phi \right) (x) \eta_{0,\nu} \left(h_{\alpha,\beta} \psi (x) \right) < \infty.
$$

Hence $h_{\alpha,\beta}$ $(\phi \#_{\alpha,\beta} \psi) \in H_w$ (*I*). Since $h_{\alpha,\beta}$ is an automorphism of H_w (*I*), we have $\phi \#_{\alpha,\beta} \psi \in H_w$ (*I*). Thus proof is completed.

References:

- **1.** Altenburg G, Bessel-Transformation in Raiimen van Grundfunktionen iiber dem Interval $\Omega = (0, I)$ und derem Dual-raiimen, Math. Nachr.108 (1982), 197-208.
- 2. Belhadj M and Betancor J.J., Hankel transformation and Hakel convolution of tempered Beurling distributions, Rocky Mountain J. Math. 31(4) (2001), 1171-1203.
- 3. Beurling A. Quasi-analyticity and generalized distributions, Lecture 4 and 5,A.M.S. summer Institute, Stanford, 1961.
- 4. Bjorck G., Linear partial differential operators and generalized distributions, Ark.Math. 6(21) (1966), 351-407.
- 5. Haimo D.T., Integral equations associated with Hankel convolution, Trans. Amer. Math. Soc. 116 (1965) ; 330-375.
- 6. B.B. Waphare, Pseudo-differential type operator on certain Gevrey type spaces,Global Journal of Dynamical System and Applications,Vol.3,No.1 (2014),pp 1-10.
- 7. B.B. Waphare, The Hankel type transform of Gevrey ultra-distributions ,Elixir Appl. Math. 59,15251- 15259 (2013).
- 8. B.B. Waphare, Pseudo-differential type operator on certain Gevrey type spaces (communicated).
- 9. B.B. Waphare, The Hankel type transform of Gevrey ultra-distributions (communicated).
- 10. Zemanian A.H., A distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561-576.
- 11. Zemanian A.H., Generalized integral transformations, Intersciences Publishers, New York, 1968.