
Research Article S N V Satyanarayana P, Carib.J.SciTech, 2018, Vol.6 (1) 080-089

80

Demonstration of Unit Testing Python

Programs

Authors & Affiliation:

S N V Satyanarayana P,

Assistant Professor, Swarnandhra Institute of

Engineering & Technology, Seetharampuram,

Narsapur, W. G. Dt., Andhra Pradesh, India.

Corresponding Author:

S N V Satyanarayana P

© 2018.The Authors. Published under

Caribbean Journal of Science and

Technology

ISSN 0799-3757

http://caribjscitech.com/

Abstract:

Software Testing plays the most prominent role in ensuring the quality of

software. Unit testing tests an individual program with the intent of finding

errors in it before it is integrated with the other programs of the software.

Like JUnit for Java, most of the popular programming languages have been

implemented such unit testing frameworks for testing individual programs

before integration. In this paper, I presented the details of unit testing

framework (doctest, unittest) supported by Python and process of unit testing

python programs. I also showcased writing test cases and executing them

with illustrations and results.

Keywords: Software Testing, Python, Unit Testing, doctest, unittest, Test

case.

Research Article S N V Satyanarayana P, Carib.J.SciTech, 2018, Vol.6 (1) 080-089

81

1. Introduction:

This paper mainly focuses on demonstrating the practical usage of unit test framework in Python. Section 1 presents

the prologue about software testing and its inevitability, Unit testing and some brief introduction to Python. Section

2 consists of testing Python programs using __name__ attribute and doctest module. Section 3 presents the details

about the unit test framework of Python, i. e., unittest and testing Python programs using unittest module with

examples and results.

1.1 Software Testing: The quality of a software product is the most significant aspect that the customer will be

expecting implicitly. To ensure the quality of the software, it must be fussily tested. Software Testing is defined as

‘the process of executing a program with the intent of finding errors’. Thus testing always attempts to show the

existence of errors but never their nonexistence. Testing makes sure our code works appropriately under a set of

stated conditions. Software testing is carried out in different levels: Unit testing, Integration testing, Function testing,

System testing, Acceptance testing and Installation testing.

1.2 Unit Testing: Unit testing, specifically tests a single "unit" of code in seclusion. A unit could be an entire

module, a single class or function, or almost anything in between. Unit testing is very decisive in finding errors in

individual programs before assimilating them into a system. Many programming languages have been using their

own unit test frameworks such as JUnit (Java), PHPUnit (PHP), NUnit (.Net), CppTest and CppUnit (C++), unittest

(Python).

1.3 Brief introduction to Python: Python is a high-level, interpreted, interactive and object-oriented, open source

scripting language created by Guido Van Rossum. On Angel List (a U.S. website for startups, job seekers & startup

investors), Python is the 2nd most demanded skill and also the skill with the highest average salary offered. With the

rise of Big Data, Python developers are in demand as data scientists, especially since Python can be easily integrated

into web applications to carry out tasks that require machine learning. According to the TIOBE programming

community index (An indicator of popularity of programming languages), python is the 4th most popular

programming language out of 100.

2. Testing Python Programs

Testing python programs can be done in variety of ways. We can use the popular unit testing API of Python, the

‘unittest’ or we can use the ‘doctest’ module or we can simply test the program using ‘__name__’ attribute. In this

section, we perceive how to test a Python program using ‘__name__’ attribute and ‘doctest’ module.

2.1 Using ‘__name__’ attribute:

Every python module has a name, which is defined in the built-in attribute called ‘__name__’. When we execute a

module as a standalone program, (eg. $python3 abc.py) the attribute __name__ will be assigned the string

‘__main__’. If we imported the module abc.py in some other program then the __name__ attribute possesses the

value ‘abc’.

The following module TestDemo.py has a function ‘reverse_string()’ that returns the reverse of a given string:

We can test this module manually from the interactive shell as shown below:

Research Article S N V Satyanarayana P, Carib.J.SciTech, 2018, Vol.6 (1) 080-089

82

I included some piece of code after the function definition in TestDemo.py as shown below:

The code I added means that if the name of the module that is being run currently is ‘__main__’ then test the

function reverse_string() for some sample input. If the values returned by the function are matched with the

expected values then a message indicating the success of the test will be displayed otherwise a message indicating

failure of the test will be displayed.

When we run the module TestDemo.py (by pressing F5), we get the output as given below:

Research Article S N V Satyanarayana P, Carib.J.SciTech, 2018, Vol.6 (1) 080-089

83

I modified the code inside the function so as to make the test to fail as shown below:

When the above changed version of the module is executed, I got the following output:

This is the simplest method for unit testing python programs.

2.2 Using doctest module:

The doctest is a unit test framework that arrives prepackaged with python. The doctest module searches for pieces of

text that look like interactive Python sessions, and then executes those sessions to bear out that they work exactly as

shown. There are numerous common ways to use doctest:

 To check that a module’s docstrings are up-to-date by corroborating that all interactive examples still work

as documented.

 To perform regression testing by verifying that interactive examples from a test file or a test object work as

anticipated.

 To write tutorial documentation for a package, liberally exemplified with input-output examples.

Depending on whether the examples or the expository text are emphasized, this has the flavor of “literate

testing” or “executable documentation”.

Research Article S N V Satyanarayana P, Carib.J.SciTech, 2018, Vol.6 (1) 080-089

84

To use doctest for unit testing, we must place a docstring, which looks like the output we get in the interactive

shell, as given below:

>>>reverse_string(“hello”)

‘olleh’

>>>reverse_string(“radar”)

‘radar’

Then we must call the testmod() function of doctest to test the module. If the program is functioning as estimated

(based on the docstring) then Python will not generate any output. Otherwise it shows the failed tests. The following

is an example Python source code which demonstrates the use of doctest:

When we run this program in the Python IDLE (Integrated Development & Learning Environment), it produces no

output as shown below:

But if we run the identical code using operating system’s command prompt by passing –v as argument then it shows

output even if the tests are passed:

Research Article S N V Satyanarayana P, Carib.J.SciTech, 2018, Vol.6 (1) 080-089

85

When the test fails, Python produces the output indicating expected and observed results.

The following is the faulty code after some changes:

When the above program is executed, it gives the following output:

Research Article S N V Satyanarayana P, Carib.J.SciTech, 2018, Vol.6 (1) 080-089

86

3. unit test: Unit Test Framework of Python

The unit test unit testing framework was originally motivated by JUnit and has a similar flavor as major unit testing

frameworks in other languages. It supports test automation, sharing of setup and shutdown code for tests,

aggregation of tests into collections, and independence of the tests from the reporting framework. This framework is

appropriate for testing complex Python programs.

The subsequent terminology must be known before working with unit test:

 Test fixture: A test fixture represents the preparation needed to perform one or more tests, and any

associate cleanup actions.

 Test case: A test case is the individual unit of testing. It checks for a specific response to a particular set of

inputs. unittest module offers a base class, TestCase, which may be used to create new test cases.

 Test suite: A test suite is a collection of test cases, test suites, or both. It is used to aggregate tests that

should be executed collectively.

 Test runner: A test runner is a component which synchronizes the execution of tests and provides the

outcome to the user. The runner may use a graphical interface, a textual interface, or return a special value

to indicate the results of executing the tests.

A test case is created by sub classing unittest. Test Case. Inside that subclass we can have as many tests as we want.

The crux of each test is a call to one of the methods of unit test. Test Case class. The assert Equal() to check for an

expected result; assert True() or assert False() to verify a condition; or assert Raises() to verify that a specific

Research Article S N V Satyanarayana P, Carib.J.SciTech, 2018, Vol.6 (1) 080-089

87

exception gets raised. These methods are used instead of the assert statement so the test runner can accumulate all

test results and produce a report.

 The setUp() and tearDown() methods allow you to define instructions that will be executed before and after each

test method.

To write a simple test cases using unit test module, we need to follow the steps given below:

1. Import unit test module

2. Import a Python function or program on which you want to perform unit test.

3. Define a sub class of unittest .TestCase class.

4. Define the setUp() and tearDown() methods along with the test methods using which you want to unit test

the python program.

To better understand writing and running test cases, consider a Python module named ‘stat_func.py’ which

contains three functions mean(), median() and mode():

Now I write a test case to test the working of the function mode() of stat_func.py module as given below:

(UnitTestDemo.py)

When we run the above program, we get the output as shown below:

Research Article S N V Satyanarayana P, Carib.J.SciTech, 2018, Vol.6 (1) 080-089

88

Here ‘OK’ indicates successful execution of the test cases.

If any one of the test cases is failed then Python indicates the failure by showing an AssertionError.

I intentionally changed a line of code inside the function so that the test case fails:

When I ran the UnitTestDemo.py module after the above change in the mode() function, the output shown

below occurred:

Research Article S N V Satyanarayana P, Carib.J.SciTech, 2018, Vol.6 (1) 080-089

89

The letter ‘F’ indicates the failure of the test case.

4. Conclusion:

In this paper, I presented various approaches available for unit testing Python programs. Using simple Python

modules, I demonstrated how these approaches are used. I also presented the outputs when those tests are performed

on the Python programs. Along with the methods I presented here, there are some other ways to perform unit testing

in Python such as using PyTest module, using nose, using mock etc. I conclude that Python offers easy-to-use and

useful mechanisms for the Unit Testing of programs.

5. References:

1. “Python Essential Reference”, 3rd edition, David M. Beazley, Sams Publishing, pp: 503-516.

2. “Python Essential Reference”, 4th edition, David M. Beazley, Pearson Education, pp: 181-186.

3. https://docs.python.org.

4. “The Hitchhiker’s Guide to Python-Best Practices for Development”, Kenneth Reitz and Tanya Schlusser,

O’Reilly.

5. “Programming Python”, 4th edition, Mark Lutz, O’reilly.

