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Abstract 
Investigations are made into how the magnetic field affects torsional 

vibrations in poroelastic hollow cylinders. When the boundaries have free, fixed, 
and mixed boundary conditions, the frequency equation is explored. Most of the 
equations have been taken from Biot,s theory. Governing equations are derived 
in the presence of magnetic field. It is demonstrated that the magnetic field in 
poroelastic cylinders has a considerable impact on the dispersion curves. The 
theoretically obtained results are computed and graphically displayed. 
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Introduction 
Torsional vibrations are important in cylinder engines, and/or in the 

engines working at high rotational speeds. These types of enginesaredangerous 
in the range of operating rotational speed. As a result, the input frequency can 
get close to the torsional natural frequency of the shaft. Magnetoelastic torsional 
waves in a bar under initial stress are discussed in1. In the current study, they 
firstly discussed when rods are homogeneous & thereafter when they aren't 
homogeneous. Torsional vibrations of circular elastic plates with thickness steps 
are investigated in2. In3 authors investigated the torsional wave propagation in 
hollow cylindrical bars. In the said paper torsion wave propagation is presented 
for both solid rods and hollow cylindrical rods of various geometries. Trapped 
torsional vibrations in elastic plates are investigated in4. In5, scientists examined 
magneto-elastic torsional waves in an initial-stressed composite, non-
homogeneous cylindrical shell. In6, the authors investigated the natural 
vibrational frequencies of a hollow magnetoelastic cylinder subjected to 
substantial deformation.  

Torsional vibrations of a finite hollow poroelastic circular cylinder are 
examined in7 using Biot's theory8. The torsional vibration in infinite hollowed 
poroelastic cylinders were investigated by authors of9. Presents10 vibrations due 
to torsion therein the poroelastic dissipative hollow thick-walled cylinder with a 
starting tension. discusses coated hollow poroelastic spheres' torsional 
vibrations. Using11 the extension theory, authors in12 explored torsional vibrations 
in thick-walled, hollow poroelastic cylinders. Studied13 composite poroelastic 
spherical shell-extension biot's theory torsional vibrations.Within the context of 
Biot viscosity-extended theory, authors reported torsional waves of infinite fully 
saturated poroelastic cylinders in14. Discusses15 the torsional vibrations of a 
fluid-filled multilayered transversely isotropic finite circular cylinder.  
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Presents16 a study of radial vibrations in a 
hollow, isotropic, poroelastic cylinder with biot/squirt 
(BISQ) media. Investigates17 torsional wave 
propagation due to torsion therein hollow poro-
thermo-elastic cylinder. The magnetic field is not 
taken into account in the fore mentioned works when 
torsional vibrations for poroelasticity. The effect of a 
magnetic field on vibrations due to torsion in 
poroelastic hollow cylinders is discussed in the current 
work. For two different types of cylinders, frequency 
versus ratio of thickness to inner radius is estimated. 

Governing equations and solution of the problem 
Let z),(r, represent the cylindrical polar 

coordinates. Consider a homogenous, isotropic hollow 
poroelastic cylinder with a z -axis-directed axis and 
radii of a  and b , respectively. The motion equations 
are provided in7: 
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                                                                          (1) 
Where, solid displacements are denoted by ),,( wvuu

and fluid displacements by ),,( WVUU
 are. ijρ - mass 

coefficients. zrrzzzrr   ,,,,,  - stresses 

components and fluid pressure - s . ),,( zr FFFF 
are the Lorentz force because of axial magnetic field 
is1 

BJF   
                                                                        (2) 

 
 
Stress components ij  and fluid pressure [7] are 
expressed as 

.εRQes
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In eq. (3), ije ’s strain displacements, ijσ ’s are 

solid stresses and fluid pressure s , ijδ  the well-known 
Kroneckar delta function. e is the solid dilatation and 
ε is the fluid dilatation. The constants of poro-
elasticity are given by the notations R , Q N, A, . 
Maxwell equations governing, electromagnetic fields 
on solid medium having electrical conductivity are1 
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Where, displacement current is neglected and as per 
ohm’s law 
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Equations (4) and (5), JEBH ,,,  represent 
the vectors of magnetic intensity, magnetic induction, 
electric intensity, and current density; ue ,,  
represent the vectors of magnetic permeability, 
electrical conductivity, and displacement in the 
strained state, respectively; and c represents the speed 
of light. The vacuum equations for the electromagnetic 
field are [1]. 
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  (6) 
Where, h perturbation magnetic field in the vacuum.

E  - electric field in the vacuum. Now let suppose 
that hHH  0 , where 0H initial magnetic field. 

h small perturbation within the region. Suppose the 
cylinder is a good conductor of electricity (i.e,

 ) hence eqn. (5) provides 
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Where, 0HH  . Eliminating E  from eq. (4) and 
eq. (7) we obtain 
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From eq. (4) and eq. (8) we get 
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  (9) 
For vibrations due to torsion, equations of motion is 
reduced to  
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(10) 
Assume that the harmonic wave solution takes the 
following form 
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In eq. (11)  is the frequency, k - the 

wavenumber, and t  - time. Substituting eq. (11) and 
eq. (3) in eq. (10), one obtains 
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  (12) 
The general solution of eq. (12) takes the following 
form 
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(13) 
Where, )
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 . BA, denotes the 

arbitrary constants and )(),( 11 prYprJ are the first kind 

Bessel’s functions. sV  denotes shear wave velocity 
[7]. The non -zero stresses are  
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Boundary conditions and equation of frequency 
Free surface traction 

In this case, the frequency equation and the 
boundary conditions demonstrating that the outer and 
inner surfaces are free. 

0 r  at ar   and 

0 r
 at br   

 (15) 
 

Using Eqs. (15) and (14), one obtains two 
homogeneous equations 
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(16) 
Eliminating the constants one obtain frequency 
equation as follows 
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(18) 
Fixed surface 

In this instance, the boundary environs shows 
that inner as well as outer surface are fixed & 
frequency equation is discussed  

0)( rv  at ar   and 

0)( rv at br   
(19) 

From Eqs. (13) and (19), one obtains 
twohomogeneous equations 
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                                                                             (20) 
Eliminating the constants one obtain frequency 
equation as follows 
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Where, 
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            (22) 
Inner surface fixed and outer surface free 

In this instance, the discussion of frequency 
equation follows the boundary conditions' definition 
that inner surface being fixed as well as the outer 
surface remains free. 

0)( rv  at ar   and 

0 r
 at br   

                                                                           (23) 
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Two homogenous Eqns are from Eqns (13) 
(14) and (23) 
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Eliminating the constants one obtain frequency 
equation as follows 
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Inner surface free and outer surface fixed 

The frequency equation is explained in 
respect to the boundary conditions here, which state 
that free inner surface and fixed external surface. 

0 r  at ar   and 

0)( rv at br   
(27) 

Using eqns. (13), (14) and (27) one obtains two 
homogeneous equations 
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Eliminating the constants one obtain frequency 
equation as follows 
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Numerical results 
 The frequency equations (17), (21), (25) and 
(29) are used to calculate the numerical results. For 
two different types of cylinders, frequency is 

computed. Sandstone saturated with water makes up 
cylinders I [18] and II, sandstone saturated with 
kerosene [19]. For different magnetic intensities, one 
can establish an implicit relationship between 
frequency and the ratio of thickness to inner radius by 
using the values from the frequency equation (H). Let 

a
bg   so that 11  g

a
h .  In Table 1, the physical 

characteristics of cylinders are listed. 
 

Table-1 
Cylinder-I Cylinder-II 

210 /102765.0 mNN   
33

11 /10926137.1 mkg  
33

12 /1000213.0 mkg  
33

22 /1021537.0 mkg  

210 /10922.0 mNN   
33

11 /1090302.1 mkg  
0ρ12 =  

33
22 /10268.0 mkg  

 
Figure 1 depicts the frequency variation 

against thickness to inner radius for free traction 
surface (cylinder-I). Figure 2 depicts the frequency 
variation thickness to inner radius for free traction 
surface (cylinder-II). Figure 3 displays the frequency 
fluctuation in relation to the thickness to inner radius 
for a fixed surface (cylinder-I). Plots of variation 
versus the thickness-to-inner-radius ratio for fixed 
surfaces (cylinder-II) are shown in Figure 4.  

 
Figure 5 displays the frequency fluctuation 

versus the thickness to inner radius ratio for the inner 
fixed surface and the outer free surface for (cylinder-
I). Figure 6 displays the frequency variation versus the 
thickness to inner radius ratio for the inner fixed 
surface and the outer free surface for (cylinder-II). 
Figure 7 displays the frequency variation versus the 
thickness to inner radius ratio for the inner surface free 
and the outer surface fixed for (cylinder-I). Figure 8 
depicts the frequency fluctuation versus the thickness 
to inner radius ratio for the inner surface free and the 
outer surface fixed for (cylinder-II). Generally, 
cylinder-II values are higher than cylinder-I values. It 
can be seen in all of the figures that frequency 
decreases as the thickness to inner radius ratio 
increases. Due to the presence of a magnetic field 
within the solid portion, cylinder-II frequency is 
higher than cylinder- I. 
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Fig. 1: Frequency v/s  ratio of thickness to inner radius 
for free traction surface (cylinder-I) 

 

 
Fig. 2: Frequency V/s ratio of thickness to inner radius 
for free traction surface (cylinder-II) 

 

 
Fig. 3: Frequency v/s ratio of thickness to inner radius 
for fixed surface (cylinder-I) 
 

 
Fig. 4: Frequency v/s ratio of thickness to inner radius 
for fixed surface (cylinder-II) 
 
 

 
Fig. 5: Frequency v/s thickness to inner radius ratio for 
fixed inner surface and free outer surface (cylinder-I) 
 

 
Fig. 6: Frequencyv/s ratio of thickness to inner radius 
for inner surface fixed and outer surface free(cylinder-
II) 
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Fig. 7: Frequency v/s thickness ratio to inner radius for 
free inner surface and fixed outer surface (cylinder-I) 
 

 
Fig. 8: Frequency v/s thickness ratio to inner radius for 
free inner surface and fixed outer surface (cylinder-II) 

 
Conclusion 

It has been investigated that magnetic field 
affects a poroelastic hollow cylinder's torsional 
vibrations. For various surfaces, the frequency 
equations are derived under the influence of the 
magnetic field. For various scenarios, the numerical 
results are obtained and analysed. In every instance, 
the frequency drops if there is increase in thickness to 
inner radius ratio increases. The approach described in 
the research is applied to numerous poroelasticity and 
elasticity related issues. The mechanical engineering 
and industrial sectors use these applications. 
 
Nomenclature  

ij - stresses 
),,( wvuu - solid displacements 

ij - stresses 

ij - mass coefficients 
s fluid pressure 
e solid dilatation 
 fluid dilatation 

ij kroneckar delta function 

RQNA ,,, - poroelastic constants 
H magnetic intensity 
B magnetic induction 
E electric intensity 
J current density 

e magnetic permeability 
  electrical conductivity 
c   speed of light 

0H initial magnetic field 
H small perturbation 

*E electric field in vaccum 

sV shear wave velocity 
 frequency 
k wavenumber 
t time 
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