

Authors & Affiliation:

Vartika John,¹ Gali Pushpa Raju², G.J.V.S.N.D.Lakshmi³, Bhavanam Lurdu Rani⁴, H. B. Bollikolla^{*,5}

1.Department of Chemistry, St. John's College of Agr Uttar Pradesh- 282002, India

2.Department of Chemistry, C.R. College, Chilakalur Guntur Dist., AP-India

3.Department of Chemistry, S.R.R.& C.V.R. Govt. Junior College, Vijayawada, AP-India

4.Nalanda Inistitute of Engineering and Technology, Guntur, AP-India

5.Department of Chemistry, Acharya Nagarjuna Univ N Nagar, Guntur, AP-522510, India

¹Corresponding Author

Hari Babu Bollikolla

*Email: dr.b.haribabu@gmail.com

Article received: 05.09.2020 Article accepted: 29.11.2020

© 2020.The Authors. Published under Caribbean Journal of Science and Technology

ISSN 0799-3757

http://caribjscitech.com/

Developments On 1,2,4-Triazine Scaffold

Substitutions For Possible Anticancer

Agents

Abstract

Recent literature studies reveal that heterocyclic scaffolds containing a 1,2,4-triazine ring have gained due significance owing to their pharmacological relevance. This article gives an insight on the different methods used for synthesis of 1,2,4-triazine, its derivatives such as N-oxides, N,N'- dioxides, benzo and hetero-fused systems. The main focus will be on the anti-cancer activities of the 1,2,4triazine moiety.

Key words: 12,4-triazine, synthesis, structure-activity relationship (SAR), anti-cancer agents

Introduction

Triazines are class of molecules containing three nitrogen atoms in a six membered carbon- nitrogen ring. There are three possible isomers of triazine viz. 1,2,3- triazine, 1,2,4-triazine and 1,2,5-triazine which differ on the basis of the nitrogen atom position. Out of these, 1,2,4-triazine has been studied for its various medicinal properties like anti tumor agent, anti HIV agent, CRF receptor antagonist, anti microbial, anti inflammatory (**Figure 1**) [1-2]. The article is divided into three classes of anticancer 1,2,4-triazine substituents, namely, benzofused triazines, heterofused triazines and uncondensed triazines.

Figure 1. Structure of 1,2,4-Triazine

There are many FDA approved drugs available with 1,2,4-triazine scaffold like Azaribine (antiviral), Lamotrigine (anti-epileptic) and Tirapazamine (anticancer drug), etc. This article briefly outlines the various synthesis methods, the pharmacological activity in particular, as anti-cancer agents, SAR studies and mode of the action of these 1,2,4-triazine derivatives.

1,2,4-BENZOTRIAZINES

1,2,4-benzotriazine-1,4-dioxides (BTO), corresponding to Tirapazamine (TPZ, **Figure 2**) is the most commonly studied benzotriazine being bioreductive hypoxia activated prodrugs.

Figure 2. Structure of Tirapazamine (TPZ)

For example, XQ2, an analogue of TPZ is shown to induce G2/M arrest and apoptosis in human lung adenocarcinoma and it further prevented the human cancer cell proliferation in both normoxia and hypoxia (Scheme 1) [3].

Scheme 1. The structure of XQ2

Jiang *et al.* [4] reported synthesis of 3-amino-1,2,4-benzotriazine-1,4-dioxide analogues as shown in **Scheme 2**. The synthesized 15 analogues were screened for their cytotoxic activities in hypoxia and surprisingly, they exhibited higher cytotoxic activities compared to TPZ.

The synthetic route of compounds 1a-o. Reagents and conditions: (a) (COCl₂)₃, toluene, reflux, 3 h; (b) NH₃ (c) NaOH (d) AcOH; (e) POCl₃, reflux, 3 h (f) R1-NH-R2, ethanol, reflux, 12 h; (g) AcOH/H₂O2, 50° C, 24 h. **Scheme 2.** Synthesis of 3-amino-1,2,4-benzotriazine-1,4-dioxide analogues

Three tested compounds showed higher hypoxic selectivity against Molt-4 and HL-60 cell lines (**Table 1**).

Table 1: Cytotoxicity of the target compounds against five human cancer cell lin	es in
vitro	

Commonwed	D 1	D ²		Cytotoxicity (IC ₅₀ µM) ^a			
Compound	ĸ	K -	Molt-4	HL-60	K 562	HeP - G2	PC-3
Tpz	Н	Н	4.6±0.3	$7.0{\pm}2.6$	5.2±0.8	19.1±2.2	22.3±4.7
1a	-CH ₂ CH ₃	Н	3.3 ± 0.8	$9.0{\pm}4.2$	4.5 ± 2.3	13.5±0.7	13.3±2.6
1b	-(CH ₂) ₇ CH ₃ - n	Н	4.9±1.5	7.2±2.8	4.7±0.5	17.4±8.8	18.2±1.7
1c	-CH ₂ CH=CH ₂	Н	3.0±1.0	25.8 ± 6.0	11.2±3.4	>56	>5.6
1d	CH ₂ CH ₂ OH	Н	2.6 ± 1.7	10.7 ± 1.3	3.7±0.6	23.2±3.1	22.4±5.3
1e	$\neg $	Н	1.9±1.0	3.6±1.2	6.6±1.0	13.3±0.7	15.9±4.8
1f		Н	1.3±0.7	2.5±1.1	2.6±1.1	9.5±2.1	10.5±3.6
1g		Н	1.4±1.1	2.9±0.9	2.4±0.7	15.0±6.4	17.0±3.2
1h	CH3	Н	1.1±0.2	1.5±0.8	2.5±0.9	10.6±0.5	10.3±2.0
1i		Н	0.6±0.4	0.9±0.2	2.9±0.2	10.1±0.5	12.0±10.6
1j	H ₂ N	Н	2.3±1.8	8.3±2.8	10.6±1.1	17.4±7.4	16.1±2.4
1k		Н	2.2±0.6	2.5±0.4	1.9±0.1	8.2±1.3	10.7±0.9
11		Н	2.3±0.7	5.8±1.6	2.2±1.0	9.7±1.5	10.6±0.9
1m		Н	0.8±0.3	1.4±0.8	3.1±0.8	7.7±0.8	7.4±2.5
1n	$-CH_2CH_3$	Н	>17.6	>49	>55	>107	>107
10		-CH ₂ CH ₃	>16.1	>60	>47	>95	>95

 $^{\rm a}$ Each experiment was independently performed three times and expressed as means \pm SD .

Again, Jing and others synthesized a series of novel 3-amino-1,2,4-benzotriazine-1,4dioxide derivatives and screened for their *in vitro* cytotoxicity (**Scheme 3**).

Scheme 3. Design and synthesis of the TPZ derivatives

Yvette *et. al.* synthesized an TPZ analogue, SN26955 with attachment of an acridine scaffold for effective DNA targeting as shown in **Scheme 4** [6].

Structure of SN26955 showing the TPZ moiety on the left attached via a linker onto a DNA-intercalating acridine ring. Reagents and conditions: (a) DCM, Et3N, 20° C; (b) m-CPBA, DCM (d) HCl, MeOH

Scheme 4. TPZ analogue for effective DNA targeting

Heterofused derivatives

Dian and co. synthesized 1,2,4-triazine fused with five membered ring, pyrrolo [2,1-c][1,2,4] triazines as shown in **Scheme 5**. The synthesized pyrrolotriazines were evaluated for cytotoxic activity [7].

The results obtained are shown in **Table 2**, taking into consideration the growth inhibitory r_{CL50}

power (GI50)	•
--------------	---

Table 2							
Inhibition of in vitro tumour cell growth by pyrrolotriazines 4a – e							
Cell Line		Cytotox	icity (Gl	₅₀ in μM) ^{a,b}	,C		
	4a 4b 4c 4d 4e						
Leukaemia							
CCRF – CEM	87.6	>100	17.0	>100	39.8		
HL-60(TB)	ND	>100	7.65	>100	ND		
K-562	84.5	>100	26.1	>100	31.8		
MOLT-4	68.0	>100	23.4	>100	30.6		
RPMI – 8226	ND	>100	20.4	>100	22.7		
SR	>100	>100	24.8	>100	36.1		
Non-Small cell bone cancer							
A549/ATCC	>100	>100	17.5	>100	39.9		
EKVX	88.7	27.9	3.34	>100	38.0		
HOP-62	47.8	32.3	26.1	>100	85.6		
HIO – 92	>100	18.2	14.5	ND	ND		
NCI – H226	ND	16.9	11.0	>100	ND		
NCI – H23	37.9	24.4	6.97	>100	38.3		
NCI – H322M	>100	>100	20.8	>100	58.4		
NCI – H460	>100	>100	14.3	>100	39.8		
NCI –H522	35.2	48.9	18.1	>100	27.8		
Colon Cancer							

COLO 205	>100	>100	16.4	>100	32.9
HCC – 2998	57.3	ND	ND	>100	32.5
HCT – 116	84.9	78.3	13.5	>100	42.1
HCT - 15	>100	88.4	14.8	>100	37.5
HT 29	>100	>100	10.5	>100	33.7
KM12	>100	>100	18.6	>100	30.7
SW - 620	>100	>100	21.9	>100	40.6
CNS Cancer					
SF – 268	42.7	28.2	23.1	>100	37.7
SF – 295	>100	37.9	15.2	>100	34.1
SF – 539	ND	ND	20.9	>100	30.9
SNB – 19	ND	ND	ND	>100	21.3
SNB – 75	18.8	10.5	17.9	ND	ND
U251	>100	42.2	23.4	>100	38.0
Melanoma					
LOX IMVI	>100	>100	19.7	>100	34.6
MALME-3M	>100	26.9	24.4	>100	20.8
M14	>100	>100	15.3	>100	34.9
SK-MEL-2	>100	51.3	15.7	>100	42.3
SK-MEL-28	>100	>100	15.4	>100	21.6
SK-MEL-5	>100	30.4	15.1	>100	39.9
UACC-257	>100	71.6	17.0	>100	25.4
UACC-62	>100	56.7	5.51	>100	23.9
Ovarian Cancer					
IGROV1	>100	52.5	24.7	>100	22.2
OVCAR 3	>100	>100	24.9	>100	29.4
OVCAR – 4	16.4	2.77	13.1	>100	10.9
OVCAR – 5	>100	>100	24.7	>100	>100
OVCAR – 8	>100	24.8	21.5	>100	28.4
SK-OV-3	>100	33.6	21.5	70.4	23.9
Renal Cancer					
786-O	>100	84.8	20.9	>100	56.2
A498	>100	>100	13.4	>100	26.8
ACHN	>100	63.6	16.4	>100	29.9
CAK1-1	>100	37.1	16.1	>100	52.6
RXF 393	ND	ND	ND	>100	98.4
SN12C	>100	>100	22.4	>100	37.9
TK – 10	80.1	30.5	12.3	>100	37.0
UO – 31	>100	28.8	13.3	>100	33.4

The pyrrolotriazines such as **4c** and **4e** showed an interesting broad spectrum antiproliferative activity (**Table 3**).

Table 3

Cell Line	Cytotoxiety (Gl ₅₀ in µM) ^{a,b,c}						
	4 a	4b	4 c	4 d	4e		
Prorate Cancer							
PC-3	ND	ND	ND	>100	82.5		
DU - 145	>100	>100	23.3	>100	83.9		
Breast Cancer							
MCF7	>100	ND	ND	>100	39.4		
NCI/ADR-RES	>100	>100	16.5	>100	38.8		
MDA-MB-	54.7	17.1	12.2	>100	51.7		
HS 578T	39.8	62.1	22.8	>100	24.6		
MDA-MB-435	>100	>100	16.4	>100	32.0		

MDA-N	>100	>100	18.5	>100	27.0	
BT-549	69.3	28.5	14.8	>100	40.4	
T-47D	19.7	19.6	18.4	>100	53.7	
^a Data obtained from NCT's in vitro disease-oriented tumour cells screen						
^b Gl ₅₀ is the molar concentration causing 50% growth inhibition of tumour cells.						
Compounds with $Gl_{50} > 100 \mu M$ are considered inactive.						

^c ND = Not Determined

Hunt et al. identified the pyrrolo[2,1-f][1,2,4]triazine nucleus as a novel kinase inhibitor templat ewhich effectively mimics the well-known quinazoline kinase inhibitor scaffold [8]. The scheme followed for the production of anti-cancer chemicals was:

Reagents: (a) DMF, POCl3, 1,2- dichloroethane; (b) hydroxylamine- O-sulfonic acid, KOH, water; (c) Omesityllenesulfonylhydroxylamine, NaH, CH2Cl2; (d) KOH; (e) HCO2H, NaOAc; (f) NaOMe, MeOH; (g) POBr3; (h) 3chloro- 4- fluoro-phenylamine Scheme

6. Synthesis of pyrrolo[2,1-f][1,2,4]triazine nucleus

Like the quinazoline-based kinase inhibitors, the pyrrolotriazine-based inhibitors bind in the ATP pocket (Table 4).

Table 4. Enzymatic and Cellular Activity of Pyrrolotriazine Kinase Inhibitors

					biochemical IC50(µM)		cellular IC50 (1	nM)
Compd	R4	R5	R6	R7	VEGFR-2	EGFR	HUVEC: EGF/EGF	DiFi
9	А	Η	Н	Н	>10	0.118	>2500/345	1840
10	А	Me	Η	Н	>10	0.100	>2500/602	3060
11	А	Н	Me	Н	>2	0.151	>2500/509	1600
12	А	Η	Н	Me	>2	3.25	>2500/>2500	>10000
13	В	Н	Н	Н	1.44 ± 0.95	0.51	360/ND ^a	>10000
14	В	Me	Н	Н	0.066	0.346	98±88/270	>10000
15	В	Н	Me	Н	0.405	0.654	213±89/644	>10000
16	В	Н	Н	Me	>10	29.4	477±92/101	>10000
14	В	Me	Me	Н	0.023	0.200	310/ND	>10000

^a ND = not determined

Fink *et al.* reported further SAR studies on pyrrolo [2,1-f][1,2,4] triazine derivatives to extend their use as both EGFR and HER2 inhibitors [9].

EGFR and HER2 are receptor tyrosine kinases belonging to the family of ErbB kinases [10]. The various schemes followed for development of anti cancer drugs were:

Scheme 7

It was observed that when the C-4 is relatively small aniline ring or 5 or 6 bicyclic fused ring (**5a-b**) then the activity of the enzyme is inhibited the most. The structure- activity relationships at various positions are as follows:

Table 5. Structure-activity relationship for C4 position

		NHR N	
Compound	R	HER 2 ^{a ,b} IC ₅₀ (µM)	EGFR ^b IC ₅₀ (µM)
5a	₹ CI	2.8	0.09
5b	ч _ч , Br	3.0	0.06

5c	NH NH	3.3	0.05
5d		7.2	0.20
5e		0.18	0.12
5f		0.82	0.61

 ^{a}IC $_{50}$ values are reported as the mean of atleast three determinations. Variability around the mean valve was <15%.

At C-5 position, the activity of HER2 and EFGR was completely destroyed with increase in shape and size of the substituent.

Table 6. Structure-Activity relationship for the C-5 and C-6 positions

		HN	NH NH	
Compound	R ¹	\mathbf{R}^2	HER 2 IC 50 ^a (μM)	EGFR IC 50 ^a (µM)
5e	Et	CO ₂ Et	0.20	0.20
5g	Η	CO ₂ Et	0.39	0.12
5h	Me	CO ₂ Et	0.20	0.20
5i	iPr	CO ₂ Et	0.21	0.20
5j	nPr	CO ₂ Et	1.2	0.95
5k	Bn	CO ₂ Et	>25	>25
6	Et	CO_2H	0.04	0.02
7a	Et	$C(O)NH_2$	0.11	0.12
7b	Et	C(O)NHMe	0.13	0.07
7c	Et	$C(O)NMe_2$	0.50	0.20
9a	Et	NHC(O)OBn	0.17	0.21
10	Et	CH ₂ OH	0.73	0.49
11	Et	CH ₂ NHEt	9.7	7.4
12	Et	CH ₂ OEt	1.4	0.95
13	Et	CH ₂ C(O)NH ₂	2.4	1.1
14	Et	CH ₂ CO ₂ H	0.68	1.6

^aIC $_{50}$ values are reported as the mean of at least three determinations. Variability around the mean value was <15%.

Hay *et. al.* [11] designed a series of novel tricyclic triazine di-*N*-oxides (TTO) related to tirapazamine.

Reagents: (i) NH₂CN, HCl, heat, then 30% NaOH, heat (ii) CH₃CO₃H, CH₃CO₂H; (iii) NaNO₂, CF₃CO₂H; (iv) DMF, POCl₃, heat; (v) t- BuNO₂, CH₂I₂, CuI, THF, heat (vi) R₂CH₂CH₂NH₂, DME, heat; (vii) Stille or Heck coupling; (viii) CF₃CO₂H, DCM
 Scheme 10. Synthesis of novel tricyclic triazine di-*N*-oxides (TTO)

Mohammadi et al. synthesized 9-(alkythio)-acenapthol [1,2-e]-1,2,4-triazine analogues and studied cytotoxic activity. 9-(alkylthio) acenaphtho[1,2-e]-1,2,4-triazines were synthesized via the reaction of acenaphtho-9,10-quinone with thiosemicarbazide, and then with the benzyl

chloride derivatives [12].

Scheme 11. Synthesis of 9-(alkythio)-acenapthol [1,2-e]-1,2,4-triazine analogues

Cytotoxicity assay The in vitro cytotoxic activities for prepared acenaphtho derivatives are shown in **Table 7**.

Table 7. Cell growth inhibitory activity of syntheticacenphtho derivatives assessed by the MTT reduction						
	assay	7.				
		IC ₅₀ ^a (µM)				
Comp.no		MCF-7	MOLT-4			
	nL-ou cells	cells	cells			
5a	48.4±8.7	NA ^b	30.1±5.6			
5b	36.0±5.4	NA	28.0±4.6			
5c	51.2±7.6	NA	30.3±8.2			
5d	NA	NA	NA			
5e	30.1±3.6	NA	33.6±2.9			
5f	ND ^c	61.9±20.6	65.5±20.4			
5g	ND	NA	NA			
Cisplatin	3.0±0.1	23.7±6.8	3.0±0.2			
Doxorubicin	0.014±0.002	0.221±0.095	0.017±0.002			
^a Values represent mean ±S.E.M						
^b NA: not active.						
°ND:not determined.						

Li et al. synthesized two novel series of pyrrolo[2,1-f][1,2,4]triazine *C*-nucleosides and evaluated for their cytotoxic activity [13].

Scheme 12. Synthesis of C-nucleoside.9.Reagents and conditions: a) CCI3C(NH)OBn, CF3 SO3H, dioxane,0o C,3h,80%: b) nBuLi, THF,-78o ,3h,10-30% .

 $\begin{array}{l} \textbf{Scheme 13 Structural variation at position 7.} Reagents and conditions . a) NCS, DMF, O ^{0}C to rt, 2 days, 20\% . b) NBS, DMF, O ^{0}C to rt 1 hr, 25\% : c) NIS, DMF, O ^{0}C to rt 4 days, 43\% : d) (i) Zn(O), Zn(CN)_2 Pd(P(tBu_3))_2 DMA, 150^{0} C, 1hr, (ii) PS-TPP, 21 hr, 13\% over 2 steps. \end{array}$

UNCONDENSED 1, 2, 4-TRIAZINES

Cerecetto let al. synthesized novel 5-(2-arylethenyl)-1,2,4-triazine *N*-oxide and *N*,*N*'-dioxide derivatives in order to obtain compounds as selective hypoxic cell cytotoxins [14].

Figure 1: Structures of Tirapazamine and 1,2,4 -Triazine N4 -Oxide early developed.

Scheme 14. Ppreparation of 5(2-arylethenyl)-1-2-triazine N-oxide and N,N1 -dioxide derivatives.

Pruijn etal. studied the influence of lipophilicity on the extravasculartransport properties of the hypoxic cytotoxintirapazamine (TPZ, **1**) [15].

Scheme 15

Mohareb et al. synthesized compounds containg 1,3,4 oxadiazine, 1,2,4-triazine and pyrazole derivatives by employing hydrazide-hydrazones [16]. The scheme of synthesis was as follows:

Scheme 16: Reagents and conditions: 1, 4- dioxane (0.01 mole equiv.), heat 2b, stirring at r.t. 2h, yield 80% (3a), 72% (3b), 88% (3c)

Scheme 17: Reagents and conditions: (i) NaOEt, EtOH (0.01equiv.), heat in a boiling water bath 4hrs (ii) HCl in ice/water, pH, 70% (4a), 78% (4b), 63% (4c)

Scheme 18: Reagent and conditions: 1,4- dioxane (0.01) equiv., heat 3 h, ice/ water with HCl, 60% (7b)

Some of the synthesized products showed high inhibitory effect towards the three cell lines.

Table 8. Effect of compounds 3-15c on human tumor cells						
Compound	GI ₅₀ (μM)					
	MCF-7	NCI-H 460	SF-268			
3a	66.6±12.2	12±6.2	24.8±3.2			
3b	20±0.4	24.3±0.8	32±0.8			
3c	30±0.6	17.3±1.4	22.3±1.5			
4a	40.6±12.6	32.6±8.6	60.4±14.8			
4b	72.7±17.5	40.2±12.8	50.0±9.01			
4c	11.8±0.6	14.5±0.8	16.7±1.6			
7a	35.4±10.2	24.1±0.8	18.9±6.8			
7b	38.0±1.8	44.0±0.8	20.5±1.1			
9a	22.0±0.2	30.6±1.4	38.4±0.6			
9b	50.1±0.7	23.2±4.8	18.4±1.8			
11a	11.9±0.5	14.1±0.6	20.3±0.5			
11b	70.9±0.9	43.6±1.8	56.8±0.8			
13a	66.6±16.9	38.9±10.8	50.8±8.6			
13b	40.6±12.2	32.6±8.6	60.4±14.8			
13c	22.0±0.2	30.6±1.4	38.4±0.6			
15a	20±0.4	24.3±0.8	32±0.8			
15b	70.9±0.9	43.6±1.8	56.8±0.8			
15c	2.5±0.5	10.4±0.6	8.0±0.4			
Doxorubicin	0.0428 ± 0.008	0.0940±0.008	0.0940±0.007			

Table 8. Effect of con	pounds 3-15c on	human tumour cells
------------------------	-----------------	--------------------

Jaroslaw etal. described the syntheses of a number of 4-chloro-2mercaptobenzenesulfonamide possessing bulky aromatic/heterocyclic moieties substituting the sulfonamide functionality [17].

16-18

Scheme 19. Syntheses of a number of 4-chloro-2-mercaptobenzenesulfonamide
Tang et al. [18] have synthesized novel chalcone derivatives containing a 1,2,4-triazine moiety
and evaluated for TMV (tobacco mosaic virus) antiviral activity.

Scheme 19. Syntheses of novel chalcone derivatives containing a 1,2,4-triazine moiety

Mohsen et al. exploited various reactions of 3-hyrazino-5,6-diphenyl-1,2,4-triazine with various carbonyl compounds such as ethyl acetoacetate, acetylacetone, benzoin, isatin, phthalic anhydride, phenyl isocyanate and acetic anhydride [19].

Scheme 20. Reactions of 3-hyrazino-5,6-diphenyl-1,2,4-triazine with various carbonyl compounds

The effective dose calculated as IC50, which correspond to the compound concentration resulted in 50% mortality in the total cells count and presented in (Table 9).

No.	Compounds DOX	In vitro cytotoxicity IC 50 (µM)			
		HePG 2	MCF-7		
		4.50±0.2	4.17±0.2		
1	2	31.75±2.5	35.38±2.4		
2	4	7.21±0.8	9.72±0.9		
3	14	72.13±3.9	68.23±3.8		
4	16	39.49±2.6	45.08±2.8		
5	12	61.84±3.5	67.14±3.7		
6	13	27.93±2.1	26.99±2.0		
7	11	19.18±1.7	21.10±1.8		
8	10	82.34±4.6	72.15±4.1		
9	3	55.35±3.2	49.27±3.0		
10	9	76.58±4.1	91.48±5.2		
11	15	48.16±2.9	58.36±3.4		
12	6	9.11±1.0	12.84±1.1		
IC ₅₀ (µM) : 1-10 (very strong) .(11-20)strong.21-50 (moderate).51-100 (weak) and above					
100(noncytotoxic).					

Table 9. Cytotoxic activity of some compounds against human tumor cells.

Branowska et al. [20] have very recently synthesized 1,2,4-triazine sulfonamides and evaluated *in vitro* anticancer activity. to verify whether they exhibited anticancer activity against the human breast cancer cell lines MCF-7 and MDA-MB-231.

Scheme 21.Synthesis of sulphonamides 5 and 6 starting from sulpenyl chloride 2a,b.

Scheme 22. Synthesis of sulphonamide 7

Conclusion

There are a number of anti cancer agents with 1,2,4-triazine scaffold making it a very important scaffold for cancer related studies and cure. As shown in this mini-review, several kinds of anticancer agents were described along with synthetic strategy. Therefore, this scaffold shows a promising result as anti tumour agents and can be used as anti-cancer drugs in the future.

References:

[1] M. W. Partridge, M. F. G. Stevens, Synthesisof some new1,2,4-Triazinea nd1,2,5oxadiazine derivatives with antimicrobial activity, J. Chem. Soc. (C), 1966, 1127-35.

[2] S. Cascioferro, B. Parrino, V. Spanò, A. Carbone, A. Montalbano, P. Barraja, P. Diana, G. Cirrincione. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. *European Journal of Medicinal Chemistry*. 2017, 142, 328-375

- [3] J. Lou, X. Zhou, Q. Weng, D. Wang, Q. Xia, Y. Hu, Q. He, B. Yang, P. Luo, XQ2, a novel TPZ derivative, induced G2/M phase arrest and apoptosis under hypoxia in nonsmall cell lung cancer cell, Biosci. Biotechnol. Biochem. 2010, 74, 1181-1187.
- [4] F. Jiang, B. Yang, L. Fan, Q. He, Y. Hu, Synthesis and hypoxic-cytotoxic activity of some 3-amino-1,2,4-benzotriazine-1,4-dioxide derivatives, Bioorg. Med. Chem. Lett. 2006, 16, 4209-4213.
- [5] F. Jiang, Q. Weng, R. Sheng, Q. Xia, Q. He, B. Yang, Y. Hu, Synthesis, structure and hypoxic cytotoxicity of 3-amino-1,2,4-benzotriazine-1,4-dioxide derivatives, Arch. Pharm. (Weinheim). 340 (2007) 258-263.
- [6] Y. M. Delahoussaye, M. P. Hay, F. B. Pruijn, W. A. Denny, J. M. Browna, Improved potency of the hypoxic cytotoxintirapazamine by DNA-targeting. Biochem. Pharmacol. 2003, 65, 1807-1815.
- [7] P. Diana, P. Barraja, A. Lauria, A. Montalbano, A. Maria Almerico, G. Dattolo, G.Cirrincione, Pyrrolo[2,1-c][1,2,4]triazines from 2-diazopyrroles: synthesis and antiproliferative activity Eur. J. Med. Chem. 2002, 37, 267–272.

- [8] J. T. Hunt, T. Mitt, R. Borzilleri, J. Gullo-Brown, J.Fargnoli, B. Fink, W. Han, S.Mortillo, G. Vite, B.Wautlet, T. Wong, C. Yu, X.Zheng, and R.Bhide, Discovery of the Pyrrolo[2,1-*f*][1,2,4]triazine Nucleus as a New Kinase Inhibitor Template, J. Med. Chem. 2004, 47, 4054-4059.
- [9] B. E. Fink, G. D. Vite, H. Mastalerz, J. F. Kadow, S. H. Kim, K. J. Leavitt, K. Du, D. Crews, T. Mitt, Tai W. Wong ,J. T. Hunt, D. M. Vyas and J. S. Tokarski, New dual inhibitors of EGFR and HER2 protein tyrosine kinases, J. Med. Chem. 2005, 47, 4774–4779.
- [10] M.A. Olayioye, R.M. Neve, H.A. Lane, N.E. Hynes, The ErbB signaling network: receptor heterodimerization in development and cancer, EMBO J. 2000, 19, 3159-3167.
- [11] Michael P. Hay, Kevin O. Hicks, Karin Pchalek, Ho H. Lee, Adrian Blaser, Frederik B. Pruijn, Robert F. Anderson, Sujata S. Shinde, William R. Wilson, and William A. Denny, Tricyclic [1,2,4]Triazine 1,4-Dioxides As Hypoxia Selective Cytotoxins, J. Med. Chem. 2008, 51, 6853-6865.
- [12] M. K. Mohammadi, O. Firuzi, M. Khoshneviszadeh, N. Razzaghi-Asl, S. Sepehri, R. Miri, Novel 9-(alkylthio)-Acenaphtho[1,2-e]-1,2,4-triazine derivatives: synthesis, cytotoxic activity and molecular docking studies on B-cell lymphoma 2 (Bcl-2), DARU J. Pharm. Sci. 2014, 22, 2.
- [13] Q. Li, E. Lescrinier, L. Persoons. D. Daelemans, P. Herdewijn, S. De Jonghe. Synthesis and Biological Evaluation of Pyrrolo[2,1-*f*][1,2,4]triazine *C*-Nucleosides with a Ribose, 2'-Deoxyribose, and 2',3'-Dideoxyribose Sugar Moiety. Chem. Med. Chem. 2017, 13 (1), 97-104
- [14] H. Cerecetto, M. González, M. Risso, P. Saenz, C. Olea-Azar, A. M. Bruno, A. Azqueta, A. López De Ceráin, A. Monge. 1,2,4-Triazine *N*-oxide derivatives: studies as potential hypoxic cytotoxins. Part III. Arch Pharm (Weinheim) 2004, 337(5):271-80.
- [15] F. B. Pruijn, J. R. Sturman, H. D. S. Liyanage, K. O. Hicks, Michael P. Hay, W. R. Wilson, Extravascular Transport of Drugs in Tumor Tissue: Effect of Lipophilicity on Diffusion of Tirapazamine Analogues in Multicellular Layer Cultures, J. Med. Chem. 2005, 48, 1079-1087.
- [16] R. M. Mohareb, R. A.Ibrahimc, H. E. Moustafa, Hydrazide-Hydrazones in the Synthesis of 1,3,4-Oxadiazine, 1,2,4-Triazine and Pyrazole Derivatives with Antitumor Activities, Open Org. Chem. J. 2010, 4, 8-14.

- [17] J. Sławinski, M. Gdaniec, Synthesis, molecular structure, and in vitro antitumor activity of new 4-chloro-2-mercaptobenzenesulfonamide derivatives, Eur. J. Med. Chem. 2005, 40, 377-389.
- [18] Xu Tang, Shijun Su, Mei Chen, Jun He, Rongjiao Xia, Tao Guo, Ying Chen, Cheng Zhang, Jun Wang and Wei Xue. Novel chalcone derivatives containing a 1,2,4-triazine moiety: design, synthesis, antibacterial and antiviral activities. RSC Adv. 2019, 9, 6011-6020.
- [19] M. K. Abou-Elregal, A. T. A. Mohamed, A. S. A. Youssef, M. M. Hemdan, S. S. Samir, W. S. I. Abou-Elmagd. Synthesis and antitumor activity evaluation of some 1, 2, 4-triazine and fused triazine derivatives. Synth. Commun. 2018, 48 (18), 2347-2357
- [20] D. Branowska, Z. Karczmarzyk, E. Wolinska, W. Wysocki, M. Morawiak, Z. Urba´ nczyk-Lipkowska, A. Bielawsk, K. Bielawski. 1,2,4-Triazine Sulfonamides: Synthesis by Sulfenamide Intermediates, In Vitro Anticancer Screening, Structural Characterization, and Molecular Docking Study. Molecules 2020, 25, 2324-2341.