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Abstract 

This study introduced a solvent-free synthesis of 1,8-

dioxodecahydroacridine derivatives through a one-pot condensation 

reaction involving cyclic 1,3-diketone and aldehydes, utilizing sulfated tin 

oxide (STO) as a heterogeneous catalyst, achieving yields of up to 93%. 

The current methodology presents numerous advantages, including low 

cost, a recoverable and reusable catalyst (up to three times), a solvent-free 

strategy, straightforward setup, high yield, and reduced reaction time, 

effectively highlighting the environmentally friendly nature of the present 

reaction. 

Keywords: 
Sulfated tin oxide (STO); 1,8-dioxodecahydroacridines; 

catalysis; recyclability; multicomponent reactions (MCRs). 
 
Introduction 

Concurrent research in organic synthesis emphasizes economic 
efficiency. Assessment of the efficiency of a chemical synthesis involves 
evaluating several parameters, such as selectivity and overall yield. 
Additionally, factors concerning raw materials, time, human resources, 
and energy requirements must also be considered. Additionally, the 
toxicity and hazards associated with the chemicals and protocols involved 
are also important factors to evaluate. It is now acknowledged that the 
step count serves as a critical criterion in assessing the efficiency of a 
synthesis. 

 
In this context, multicomponent reactions (MCRs) have emerged 

as effective and efficient tools for bond formation in organic, 
combinatorial, and medicinal chemistry.1-2 The MCRs strategy provides 
considerable benefits compared to traditional multistep synthesis, owing 
to its flexible, convergent, and atom-efficient characteristics. MCRs 
exemplify environmentally sustainable practices by minimizing the 
number of steps involved, lowering energy consumption, and decreasing 
waste generation.3-4 
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 Solid heterogeneous catalysts provide 
notable benefits in synthetic chemistry, such as 
easy regeneration, reduced corrosiveness, lower 
costs, ease of handling, and efficient reuse.5-8 
Sulfated tin oxide, referred to as SO4

-2/SnO2 (STO), 
has emerged as a widely recognized and effective 
catalyst owing to its extensive surface area, high 
efficiency, non-corrosive properties, cost-
effectiveness, and broad surface area. Commonly 
employed in chemical and industrial 
environments,9-29 it consists of sulfated and 
sulfonic acid groups on various heterogeneous 
solid substrates. 

  
 

 

Fig. 1. Some acridine derivatives in clinical use 

Acridines that contain the polyfunctionalized 1,4-
dihydropyridine (DHPs) parent nucleus exhibit 
notable pharmaceutical properties, including 
positive ionotropic effects that facilitate the entry 
of calcium into the intracellular space. 
Additionally, 1,8-acridinediones are recognized for 
their application as laser dyes. These derivatives 
serve as luminous agents in spectroscopy and 
function as semiconductors in material science. The 
DHP derivatives are recognized for their extensive 
biological and pharmacological activities, including 
antitumor, antitubercular, antimalarial, 
antibacterial, antihypertensive, fungicidal, 
anticancer, and anti-inflammatory properties, as 
well as their potential in treating Alzheimer's 
disease and angina pectoris. Examples of published 
derivatives of acridines along with their biological 
activities are presented in the following Fig. 1.30-32 

 

1,8-Acridinediones were synthesized 
using the Hantzsch procedure, which involves the 
thermal reaction of 5,5-dimethyl-1,3-
cyclohexanedione (dimedone) with an aldehyde 
and ammonia. Many methods involving various 
catalysts have been previously reported. These 
methods typically require extended reaction times, 
yield 1,4-dihydropyridines at relatively low levels, 
and often involve the use of harmful organic 
solvents.33-34 The synthesis of 1,8-
dioxodecahydroacridine presents opportunities for 
further innovation in methodologies that utilize 
milder reaction conditions, reduce reaction times, 
allow for greater variation in substituents, and 
enhance yields. It is essential to explore innovative 
methodologies that utilize new and efficient 
catalysts. This represents an ongoing commitment 
to advancing innovative methodologies for diverse 
organic transformations.14,35 This report presents an 
effective method for synthesizing 1,8-
dioxodecahydroacridine derivatives via a one-pot, 
three-component cyclization reaction, catalyzed by 
STO in acetonitrile as the solvent.  
 

Experimental  
Typical procedure for the synthesis of 
acridinediones: 

A mixture of dimedone (2 mmol), an appropriate 
aromatic aldehyde (1 mmol), ammonium acetate 
(1.2 mmol) or amine derivative (1 mmol) and 10 
mol% of STO catalyst in acetonitrile (2 mL) was 
refluxed for the time specified in Table 1. The 
reaction was monitored by TLC using petroleum: 
ethyl acetate (4:1) as eluent. After completion of 
the reaction, boiling ethanol was added to the 
mixture and the catalyst was removed by filtration 
and the filtrate was concentrated under vacuum. 
The product was purified by recrystallization from 
ethanol.The desired products of purity were further 
achieved by column chromatography with 
petroleum ether/ethyl acetate to provide the 
analytically pure product. Compounds were 
characterized by using IR, 1H NMR, and 13C NMR.  

Representative spectral data of compound 4d 
(3,3,6,6-Tetramethyl-9-(4-chlorophenyl)-10-
phenyl-3,4,6,7,9,10-hexahydro-1,8-(2H,5H)-
acridinedione): m.p.243-245 0C; 1H-NMR 
(CDCl3): δ 0.73 (s, 6H, CH3), 0.85 (s, 6H, CH3), 
1.76 (d, J = 17.6 Hz, 2H, CH2), 2.02 (d, J = 17.5 
Hz, 2H, CH2), 2.04 (d, J = 16.2 Hz, 2H, CH2), 2.13 
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(d, J = 16.2 Hz, 2H, CH2), 5.19 (s, 1H, CH), 7.13 
(d, J = 8.29 Hz, 2H, ArH), 7.17 (d, J = 7.81 Hz, 
2H, ArH), 7.31 (d, J = 8.29 Hz, 2H, ArH), 7.49 (m, 
3H, ArH).  

Results and Discussion 

 This study involves the substitution of 
ammonium acetate with aniline for the synthesis of 
decahydroacridine-1,8-diones via the Hantzsch 
reaction, utilizing a STO catalyst under different 
reaction conditions (Scheme 1). We commenced 
our investigation by conducting a reaction 
involving benzaldehyde (1), 1,3-cyclohexadione 
(2) and aniline (3) utilizing STO (20 mol%) across 
various solvents as well as under solvent-free 
conditions. Acetonitrile has been identified as the 
optimal solvent among those tested (entry 3). 
Under controlled conditions, the reaction is 
observed to be ineffective (entry 6). The catalytic 
efficiency of STO was clearly demonstrated by the 
incomplete conversion observed even after 24 
hours without the catalyst present. Following the 
selection of the solvent, the model reaction was 
evaluated utilizing various catalyst loadings of 
STO. We observed that 10 mol% of catalyst is 
effective for the desired transformation (4a), 
demonstrating favorable results in both yield and 
reaction time. The optimized reaction parameters 
are as follows: STO (10 mol%) in acetonitrile 
under reflux conditions, conducted in open air. 

 

+ +

CHO O

O

NH2

N

OO

STO (x mol%)

a Isolated yield

entry catalyst (mol%)/CH3CN time (h) yield  (%)a

1 5 2 17

2 7.5 1.5 63

3 10 1 89

4 20 1 90

5 - 24 nr

Scheme 1. Screening of reaction conditionsa

entry solvent/reflux
(20 mol% STO)

time (h) yield  (%)a

1 2 NR

2 toluene 1.5 58

3 1 90

4 1 48

5

Neat/80 oC - NR

solvent

CH2Cl2

CH3CN

CHCl3

6

EtOH 1.5 26

1 2 3

4a

Scheme 1. STO-catalyzed synthesis of 
decahydroacridine-1,8-diones 
 

In order to assess the scope and limitations of the 
methodology, reactions were conducted using a 
range of substituted benzaldehydes, which included 
both electron-donating and electron-withdrawing 
groups on the aromatic ring (entries 4a-h, Table 1). 
The findings indicated that the yields of N-
substituted acridinediones for aromatic aldehydes 
containing an electron-withdrawing group surpass 
those for aromatic aldehydes with electron-
donating groups. Substitutions on the aniline 
counterpart were also explored, and the reaction 
scope yielded positive results (entries 4i-4l, Table 
1). All were acquired in a relatively short duration 
(1-4.5 hours). The catalyst, which is both 
recoverable and reusable, demonstrated no 
significant loss of the desired product over three 
cycles (4a, 85%). The catalyst is capable of being 
filtered, oven dried at 100 °C, and reused for a 
minimum of three cycles without a substantial loss 
of the desired product. 
 
Table 1. STO-Catalyzed multicomponent synthesis of 1,8-dioxodecahydroacridinesa

Entry Aldehyde Aniline Product Time (h) Yield (%)

1 C6H5CHO PhNH2 4a 1 89
2 4-Me-C6H4CHO 4b 3.0 85
3 4-OMe-C6H4CHO 4c 3.0 82
4 4-Cl-C6H3CHO 4d 2.5 90
5 4-NO2-C6H4CHO 4e 1.5 93
6 4-CN-C6H4CHO 4f 1.0 78
7 3-NO2-C6H4CHO 4g 1.0 88
8 4-OH-C6H4CHO 4h 2.5 80
9 C6H5CHO 4-Me-C6H4NH2

4i 2.0 82
10 4-Cl-C6H4CHO 4-Me-C6H4NH2

4j 2.0 85
11 4-NO2-C6H4CHO 4-Cl-C6H4NH2

4k 1.5 83
12 4-OH-C6H4CHO 4-NO2-C6H4NH2

4l 4.5 82
aIsolated yields

PhNH2
PhNH2

PhNH2
PhNH2
PhNH2
PhNH2
PhNH2

 

The formation of 1,8-
dioxodecahydroacridines can be explained by the 
initial creation of the imine, which is catalyzed by 
STO, resulting from the condensation of aromatic 
aldehydes 2 with the corresponding aniline 1 
(Scheme 2). The attack of the enol form of 
dimedone on the imine 3 leads to the formation of 
adduct 4, which subsequently undergoes an internal 
rearrangement to yield aniline 1 and arylidenes 5. 
The released aniline 1 may react with another 
molecule of dimedone to yield the amino enone 6, 
which could subsequently engage its nucleophilic 
amino group with the electrophilic carbon atom of 
the former arylidene, resulting in the formation of 
the new imine 7. The unstable imine may rearrange 
into the relatively stable structure of the hydroxy 
hydroacredindiones 8, which can ultimately 
stabilize into the title structure of 1,8-
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dioxodecahydroacridines through the elimination 
of a molecule of water. 
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Scheme 2. STO-Catalyzed synthesis of 1,8-
dioxodecahydroacridines-Proposed mechanism 

Conclusion 

In conclusion, we developed a solvent-free 
approach for the synthesis of 1,8-dioxo-
decahydroacridines from aromatic aldehydes, an 
amine, and a dimedone employing STO catalyst as 
an effective solid acid catalyst. The primary 
advantages of this technology are its reasonable 
reaction times, excellent yields, straightforward 
workup process, recyclable, reusable, and 
heterogeneous conditions.  
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