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Abstract: 
This research attempts to investigate the effect of periodicity usually 
occasioned by the presence of serial correlation in panel data, through the 
estimation of pooled ordinary least square estimator (POLS) of a specified 
audit fees PDRM. Other analytical techniques employed through derivation 
are Fixed Effect Least Square dummy variable (where all coefficient vary 
over time), and Random Effect estimator (REM). A conditional Lagrange 
multiplier test was developed via a two-way error components model, to 
examine the presence of serial correlation in the fitted POLS model while 
Hausman test was used to ascertain the suitability of the LSDV Model over 
Random effect model and vice-versa. The conditional LM test gave a value 
of 35.3806 with P-value of 0.0001075 which shows that there is presence of 
serial correlation among the residuals of the fitted Pooled OLS model, 
thereby rendered the estimator inconsistent. Both LSDV and RE models 
captured the goodness of fit better when compared to the Pooled OLS 
model. However, the hausman test revealed that fixed effect model will be a 
preferable model since its results support the rejection of null hypothesis. 
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1. Introduction: 

A panel is a cross-section or a kind of data in which observations are obtained on the same set of entities at several 
periods of time (Frees, 1995; Gujarati and Porter, 2009; Hsiao, 2003; Kennedy, 2008 and Green, 2003). Panel data 
models examine individual-specific effect, time effect or both in order to deal with heterogeneity/serial correlation 
of individual effects that may or may not be observed. In this paper, our focus shall only reflect on the problems 
which affect the time series aspect of panel data, which is the problem imposed by serial correlation. This shall be 
looked into via a panel data regression model of audit fees. 
 
The term serial correlation may be defined as “correlation between members of series of observations ordered in 
time (as in series data) or space (as in cross-sectional data), see (Gujarati and Porter, 2009 and Green, 2003) 
݅. ݁ Cov ( ܷ௧ , ܷ௦  ∕ (௦ݔ, ௧ݔ  =  E (  ܷ௧ , ܷ௦) ≠  0, t ≠ s. The pioneering work of (Lillard and Willis, 1978)  has 
given rise to further researches on the estimation of serial correlation effects in panel data. Prominent among these 
works are those of (Bhargava, Franzini and  Narendranathan, 1983;  Burke, Godfrey and Termayne,1990; Baltagi 
and Li, 1991,2008). 
 
 Lillard and Willis (1978) extended the error component model to take into account first-order serial correlation in 
the remainder disturbances of random effects model. Bhargava, Franzini and  Narendranathan (1983) carried out the 
same work for fixed effects. Both studies considered the first order Autoregressive [AR (1)] specification on the 
remainder disturbances. In Baltagi and Li (2008), while considering first order moving average MA(1) as a viable 
alternative to AR(1), Baltagi and Li  (1995) give a transformation which may be applied to certain serially correlated 
disturbances in an error components model to yield spherical disturbances. They derive the transformations for first 
order Autoregressive [AR(1)] and second order Autoregressive [AR(2)] cases. In furtherance to this theoretical 
paper, Baltagi and Li (2008) provide a simple estimation method for an error component regression model with qth 
order Moving Average [MA(q)] remainder disturbances. Their estimation method utilizes the transformation derived 
by Baltagi and Li (1995) for an error component model with autoregressive remainder disturbances, and a standard 
orthogonalizing algorithm for the general MA(q) model. Comprehensively, Baltagi and Li (2008) combine their 
earlier works in Baltagi and Li (1991) and Baltagi and Li (1995) by testing AR(1) against MA(1) disturbances in an 
error component model. The authors derive three Lagrangian Multiplier (LM) statistics for an error component 
model with first-order serially correlated errors. The first LM statistic jointly tests for zero first-order serial 
correlation and random individual effects, second LM statistic tests for zero first-order serial correlation assuming 
fixed individual effects, and the third LM statistic tests for zero first-order serial correlation assuming random 
individual effects. In all the three cases, the authors find that the corresponding LM statistic is the same whether the 
alternative is AR (1) or MA (1). The tests are computationally simple requiring only OLS. Galbraith and Zinde-
Walsh (1995) also considered orthogonalizing transformation for the error-component model with serially correlated 
disturbances in the general ARMA case. Their work involves generalizations of results obtained by the Baltagi and 
Li (1991) in the study of AR (1) or AR (2) error processes. 
 
More recently, Filho, Salagado, Sato and Oliveira(2014)  analysed panel data for the impact of wage premiums on 
the product market competition of major full service carriers and low fare carriers in the airline industry. The authors 
employed a fixed effects estimator for the demand (d), cost (C) and wage (w) equations. They assumed a composite-
error structure of ∈௧ௗ  , ∈௧ , ∈௧௪  in their three monthly dummy variables model specified as a followed up to the work 
of  Good, Nadri and Sickles (1991)  in which Instrumental Variables was employed.  
 
When POLS is used in the estimation of PDRM, the estimator β is only linear, unbiased as well as consistent and 
asymptotically normally distributed, but not efficient or best. That is,  β  is not BLUE (best, linear, unbiased 
estimator) in the presence of serial correlation. This implies that Var (ߚመு) =   ∑ݔଶߪଶ ⁄ଶ(ଶݔ∑)  is obviously different 
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from the usual variance formula obtained under the assumption of homoscedasticity and zero serial correlation, 
which is given as Var (ߚመைௌ) =  ߪଶ ⁄ଶݔ∑  
This research therefore, intends to examine this opinion on a PDRM tagged Audit Fees Model.  
Audit fees represent fees a company pays an external auditor in exchange for performing an audit. Prominent among 
authors who have worked on modelling of audit fees are Agunbiade and Adeboye (2012), El-Gammal (2012), 
Akinpelu, Omojola, Ogunseye and Bada (2013), Soyemi and Olowookere (2013) Hassan (2015), but they all 
conjectured differently from the background knowledge of the audit fees model specified in this research. 
 
2.  Material and Methods: 
2.1 Specification of Audit Fees Model 
This model employed the use of four (4) Pre-determined variables namely Profit before Tax (PBT), Total Assets 
(TA), Total Liability (TL) and Shareholders Fund (SHF) which shall be originated from panel data of published 
annual reports of sixteen (16) Nigerian Commercial Banks for periods of ten (10) years. The model as implied by 
the scope of auditor’s work in CAMA (1990) is thus presented as: 
            AF =     f (PBT, TA, TL, SHF) +     ε                                                                                   (1)  
When the model is expressed in an explicit format, we have  
௧ܨܣ    = ଵߚ  + ܤܲ ଶߚ ܶ௧ + ௧ܣܶ ଷߚ   + ௧ܮସܶߚ  ௧ܨܪହܵߚ + + ௧ߝ                                                (2) 

݅   ݁ݎℎ݁ݓ = 1, 2, 3, … ݐ ݀݊ܽ ܰ   = 1, 2, 3, … ,ܶ 
β1, β2, β3, β4 and β5 are parameters to be estimated and εit   is a composite error term. Within the context of this 
research, ݅ = 1, 2, 3, … , ݐ ݀݊ܽ 16 = 1, 2, 3, … , 10 
In the course of this research, we hope to demonstrate that that there is dependency over time for each of the 
operational activities. That is,  
                   Cov ( ܷ௧ , ܷ௦  ∕ , ௧ݔ  (௦ݔ =  E (  ܷ௧ , ܷ௦) ≠  0            t ≠ s                               (3)     
Within the context of PDRM, both the parameters and error terms of equation (2) shall be varied based on time that 
will result into the following equations: 

௧ܨܣ = + ଵߚ  ܤଶܲߚ  ܶ௧ + ௧ܣଷܶߚ + ௧ܮସܶߚ + ௧ܨܪହܵߚ + ௧ߝ                                                 (4) 
In estimation, we employ the dummy variable technique (i.e. the differential intercept dummies) to account for the 
periodic effect. Thus the model becomes 
+ ଵܦ ଵߣ + ߣ = ௧ܨܣ +⋯+ ଶܦ ଶߣ  ܤଶܲߚ +  ଽܦଽߣ ܶ௧ + ௧ܣଷܶߚ + ௧ܮସܶߚ + ௧ܨܪହܵߚ + ௧ߝ       (5) 
ଶߣ,ଵߣ  is the intercept of the tenth year whileߣ … , ଶܦ, ଵܦ ଽ andߣ, …  ଽ  are the intercepts and dummy variables ofܦ,
the remaining years respectively.  
In a situation where all the coefficients are allow to vary over time, we extend equation (5) to gives  
௧ܨܣ ߣ =  + ଵܦ ଵߣ +  +⋯+ ଶܦ ଶߣ  ܤଶܲߚ +  ଽܦଽߣ ܶ௧ + ௧ܣଷܶߚ + ௧ܮସܶߚ + (ଵ  PBT୧୲ܦ) ௧+ ߰ଵܨܪହܵߚ +  ߰ଶ (ܦଵ  TA୧୲) 
+ ߰ଷ (ܦଵ  TL୧୲) + ߰ସ (ܦଵ  SHF୧୲)  + … +߰ଷଷ (ܦଽ  PBT୧୲) +  ߰ଷସ (ܦଽ  TA୧୲) + ߰ଷହ (ܦଽ  TL୧୲) +  ߰ଷ (ܦଽ  SHF୧୲)  +   εit                                                           

  (6)    

It is pertinent to note that equation (5) shall be our focus model within the context of FEM. 
Similarly, for the REM, we recalled equation (4) and instead of treating as fixed, we assume that it is a random 
variable with a mean value of β1. Thus, the intercept value for the individual bank can be expressed as  
ݑ   +  ଵߚ     ଵ     ୀߚ      ,                     ݅ = 1, 2, … ,ܰ                                                          (7)                The 
individual differences in the intercept values of each bank are reflected in the error term ݑ . if we substitute equation 
(7) in (4), we have 
௧ܨܣ = + ଵߚ  ܤଶܲߚ  ܶ௧ + ௧ܣଷܶߚ + ௧ܮସܶߚ + ௧ܨܪହܵߚ ݑ + + ௧ߝ      (8) 
Equation (8) implies  
௧ܨܣ = + ଵߚ  ܤଶܲߚ  ܶ௧ + ௧ܣଷܶߚ + ௧ܮସܶߚ + ௧+  ߱௧ܨܪହܵߚ                                                (9)  
 Where ߱௧ = ݑ   + εit                                                                                                             
Thus, the composite error term  ߱௧  consists of two components  ݑ(cross section error component) and εit which is 
the combined time series and cross-section error component.   
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1.2 Model Estimation Techniques: 
Here, we provide brief theoretical overview of the three (3) techniques considered in this study. 

(i) Pooled OLS: This technique pool the data over i and t into one nT observations, and estimates of the 
parameters are obtained by OLS using the model  

                                                 y = X'β + ߱                                                                      (10) 
 where y is an nT × 1 column vector of response variables, X is an nT × k matrix of regressors, β is a (k+1) × 1 
column vector of regression coefficients, ߱ is an nT × 1 column vector of the combined error terms (i.e ߳ +    .(௧ݑ 
The Pooled estimator is given as 

= መௗߚ  (ܺᇱܺ)ିଵ ܺ′ (11)                                  ݕ 
 
(ii) Fixed Effect Least Square Dummy Variable: Let ܻ and ܺ be the ܶ observations for the ݅௧ unit, ݅ 

be a ܶ 1 ݔ column of ones, and let ݁ be associated ܶ 1 ݔ  vector of disturbances. Then 
ܻ  =  ܺβ + ߙܑ   +  ݁                                                                    (12) Connecting these 

terms in matrix form gives 

Y =  [X     ݀ଵ     ݀ଶ      …     ݀ே] [ߙߚ]  + ݁                                                             (13) 

where ݀ is a dummy variable indicating the ݅௧ unit. 
 Let the NT x N matrix ܦ = [ ݀ଵ     ݀ଶ      …     ݀] then, assembling all NT rows gives; 

Y =  Xβ +  Dα +  ݁                                                        (14) 
                                                         Estimating the equation using OLS gives an estimator 
መߚ  =  (15)                                                     [ yܯXᇱ] ଵି[ܺܯ ′ܺ] 
ℎ݁ ݅௧ݐ ݏ݅ ܦ ݁ݎℎ݁ݓ ܺ ܽݐܽ݀ ݀݁݉ݎ݂ݏ݊ܽݎݐ ℎ݁ݐ  , ′ܦଵି(ܦ′ܦ)ܦ− = MD ,݈ܾ݁ܽ݅ݎܽݒ ݕ݉݉ݑ݀  = ܻ ݀݊ܽ ܺܯ =  .  yܯ

(iii) Random Effect Estimator: Consider a random effect model  

ܻ௧ = ߚ  + ߚ ܺ௧ + ܽ ௧ݑ +                                                                                    (16)        

we employ GLS estimator by transforming model (16) into 
തܻ௧ = ߚ  + ଵߚ  തܺ௧ + തܸ௧                                                                 (17) 

We then multiply equation (17) by ߣ  and takes its difference from equation (16) to have 
ܻ௧ − ߣ തܻ௧ = (1ߚ  − (ߣ + )ଵߚ ܺ௧ − തܺ௧) + ௧ݒ − ߣ തܸ௧                                 (18) 

Thus, the GLS estimator for the slope parameter of (18) becomes  
መோாߚ = (ܺᇱ Ωିଵܺ)ିଵ(ܺᇱ Ωିଵݕ)                                        (19) 

                                                                                                                                                                      ݁ݎℎ݁ݓ
 Ωଵ ଶൗ ܫ)௨ିଵߪ =  − ܶିଵ்்݅݅ߣᇱ )                                                                                 (20) 
And ߣ (ݐℎ݁ ݇݁ݎ݁ݐ݁݉ܽݎܽ ݊݅ݐܽ݉ݎ݂ݏ݊ܽݎݐ ݕ) ݅ݏܽ ݊݁ݒ݅݃ ݏ 

−መ  =  1ߣ  ( ఙೠమ

ఙೠ   
మ ା ఙഄమ

)ଵ ଶൗ                                                                                 (21) 

Thus, equation (19) is the specific GLS estimator called Random effect estimator. 
 

(iv) Hausman Test: This is employed to test for the consistency of the random effect and fixed effect 
estimator. The hypothesis for the Hausman test is stated as  

)ݒܥ: ܪ ܺ௧ ,ܽ) = 0 
)ݒܥ: ଵܪ ܺ௧ ,ܽ) ≠ 0 

Under the null hypothesis, both random and fixed effects are consistent i.e 

→ோா⏞ߚ 
ఘ

  ≈ →ிா⏞ߚ                        , ߚ  
ఘ

  ≈  ߚ  

Thus, we can expect that ߚመோா ≈   መிாߚ  
However, under ܪଵ, only ߚመிா is consistent. Therefore, we reject ܪ if the difference between ߚመோா ܽ݊݀  ߚመிா is large 
enough. 
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1.3 Model Testing: 
Here, we shall employ a two-way error component model as earlier emphasized, to test for the violation of 
homoscedasticity assumption in our researched model. 
Considering a two-way error component model stated as: 
௧ݕ = ߚ௧ݔ + ௧ݑ   , ;   ݅ = 1,2, … ݐ   ܰ, = 1,2, … ,ܶ                                            (22) 
Within the context of two-way error component, the regression disturbances term ݑ௧  can be described by the 
equation 
௧ݑ = ߤ  + ௧ߣ  +   ௧                                                                                        (23)ݒ 
With  ߤ  representing individual-specific effect, ߣ௧  representing time-specific effect and ݒ௧   the idiosyncratic 
remainder disturbance term, which is usually assumed to be well-behaved and independent from both the regressors 
  . The two-way error component model can be written in matrix form asߤ ௧ andݔ

ݕ         = ߚܺ +  (24)                                                                                                   ݑ
The disturbance term ݑ in equation (24) can be written in vector form as  
ݑ = +߭(ே்ߡ ⨂ ே்ܫ) ߤ(்ߡ ⨂ேܫ) + ߣ(ேߡ ⨂்ܫ) + ܸ                                           (25) 
Where ܫே் is an identity matrix of dimension ܰܶ, ܫே  is an identity matrix of dimension ܰ, ்ܫ is an identity matrix of 
dimension ܶ, ߡே் is a vector of ones of dimension ܰܶ, ்ߡ  is a vector of ones of dimension ܶ, ߡே is a vector of ones of 
dimension ܰ, ߤᇱ = ,ଵߤ) ᇱߣ ,(ேߤ,  … = ,ଵߣ)  is the AR(1) covariance matrix of dimension ܶ, ⨂ denotes the ܸ,(்ߣ,  …
kronecker product and  
(ߤ)ݎܸܽ = ఓଶߪ = ℎ൫ ݂

ᇱ(ߙ)൯   , ݅ = 1 , … , ܰ                                                                   (26) 
According to Breusch and Pagan (1980), the function ℎ(∙)  is an arbitrary strictly positive twice continuously 
differentiable function, 1 ݔ ܲ ܽ ݏ݅ ߙ vector of unrestricted parameters and ݂ is a ܲ 1 ݔ vector of strictly exogenous 
regressors which determine the heteroscedasticity of the individual specific effects and the first element of ݂ is one, 
and without loss of generality, ℎ(ߙଵ) =  .ఓଶߪ 
Following Baltagi, Jung and Song (2010), the variance-covariance matrix of ݑ can be written as  
(ᇱݑݑ)ܧ = Σ = ேܫ)௨ଶߪ  ⊗ ்ߡ ᇱ்ߡ  ) + ேᇱߡேߡ ⨂்ܫ) ఒଶߪ( + ே்ܫ௩ଶߪ  ⊗ܸ                                                
= ேܫ)  ⊗ )ℎ]݃ܽ݅݀(்ߡ ݂

ᇱܫ)[(ߙே ⊗ ᇱ(்ߡ + ேᇱߡேߡ ⨂்ܫ) ఒଶߪ( + ே்ܫ௩ଶߪ  ⊗ܸ                                  
=  ݀݅ܽ݃[ℎ( ݂

ᇱߙ)] ⊗ ்ܬ + ேᇱߡேߡ ⨂்ܫ) ఒଶߪ( + ே்ܫ௩ଶߪ  ⊗ܸ                                                                                     (27) 
Where ்ܬ is a matrix of ones of dimension ܶ, ݀݅ܽ݃[ℎ( ݂

ᇱߙ)] is a diagonal matrix of dimension ܰܰݔ and ܸ can be 
expressed as  
ܸ = (ᇱܸܸ)ܧ = ௩ଶߪ ቀ

ଵ
ଵିఘమ

ቁ ଵܸ                                                                                                                                                            (28)  

 ேି்ߩ ଵܸ is a symmetric matrix of order ݁ݎℎ݁ݓ
 

1.3.1 Conditional LM Test for ࡴ : ࣆ࣌ = ࢚ࣅ࣌ ࢊࢇ ∀ ,ࣆ࣌   ≠  ࢚࢜࣌  ࢚࢛࢈
  ≠ ,࣋ >  

Here, we derive a conditional LM test for a case of homoscedastic random individual in the presence of first order 
serial correlation by setting ߠ෨′ =  ܮ ,Under normality of the disturbances, the log-likelihood function .(′ߙ,ఒଶߪ,ఓଶߪ,௩ଶߪ)
of a Lagrange multiplier follows that of a multivariate normal distribution. Thus, 

,ߚ)ܮ (ߠ =
−ܰܶ

2 ln(2ߨ)−
1
2 ݈݊

|Σ|−
1
ݑ2

ᇱஊషభ(29)                                                                               ݑ 

ߟ ݐ݁ݏ ݁ݓ ݀݊ܽ ෨ᇱ൯ߠ,ߚbecomes൫ (ߠ,ߚ)ܮ  In order to obtain the conditional LM statistic, we need .(′ߙ ,ఒଶߪ,ఓଶߪ,௩ଶߪ,′ߚ) =

to obtain the score statistic (ߠ)ܦ = డ
డఏ

 and the Information matrix (ߠ)ܫ = ]ܧ− డమ

డఏడఏᇲ
]. 

Under ܪ , the variance covariance matrix of the disturbance term as given by equation (27) becomes  
Σ = ேܫ)ఓଶߪ  ⊗ (்ܫ +′ேܫேܫఒଶߪ + ே்ܫ)௩ଶߪ ⊗) ఘܸ)          (30) 

ఘܸ ݁ݎℎ݁ݓ = ቀ ଵ
ଵିఘమ

ቁ ଵܸ ܽ݊݀ ଵܸ݅ݐ ݏℎ݁ ݔ݅ݎݐܽ݉ ݊݅ݐ݈ܽ݁ݎݎܿ(1)ܴܣ   

According to Baltagi et al. (2010), the inverse of Σ under ܪ becomes 

Σିଵ = ଵ
ఙೡమ
൫ܫே⨂ ఘܸ

ିଵ൯ − ൬ ఙഋమ

ఙೡమఙഊ
మఒమ
൰൫ܫே ⊗ ఘܸ

ିଵ்ܬ ఘܸ
ିଵ൯        (31) 
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Therefore,  
డ
డఈೖ

= (ොߙ)ܦ = − ଵ
ଶ
ݎݐ Σିଵ ൬ డஊ

డఙഊ
మ൰൨+ ଵ

ଶ
ݑො′Σିଵ ൬ డஊ

డఙഊ
మ൰Σିଵݑො൨  

= − ଵ
ଶ
ݎݐ 

ᇲ(ఈෝభ)
ఙෝೡమ

൜൫݀݅ܽ݃( ݂)⨂ܸఘିଵ்ܬ൯  − ൬ ఙෝഋమ

ఙෝഊ
మఒమ
൰ ൫݀݅ܽ݃( ݂)⊗ ܸఘିଵ்ܬ ܸఘିଵ்ܬ൯ൠ൨ 

+ ଵ
ଶ
′ොݑ 

ᇲ(ఈෝభ)
ఙෝೡర

൜൫݀݅ܽ݃( ݂)⨂ܸఘିଵ்ܬ ܸఘିଵ൯ − 2 ൬ ఙෝഋమ

ఙෝഊ
మఒమ
൰ ൫݀݅ܽ݃( ݂)⊗ ܸఘିଵ்ܬ ܸఘିଵ்ܬ ܸఘିଵ൯ൠ+ ൬ ఙෝഋర

ఙෝഊ
రఒర
൰൫݀݅ܽ݃( ݂) ⊗

ܸఘିଵ்ܬ ܸఘିଵ்ܬ ܸఘିଵ்ܬ ܸఘିଵ൯ݑො൨  

= − ᇲ(ఈෝభ)
ଶఙෝೡమ

߮ଶ(1 − ∑ො)ଶߩ ݂ −
ఙෝഋమఝర(ଵିఘෝ)ర

ఙෝഊ
మఒమ

∑ ݂
ே
ୀଵ

ே
ୀଵ ൨   

+ ᇲ(ఈෝభ)
ଶఙෝೡర

ݑොᇱ ∑ ೖ
ಿ
సభ ⨂(߮ଶ(1− ො)ଶߩ ܸఘିଵ − 2 ఙෝഋమఝర(ଵିఘෝ)ర

ఙෝഊ
మఒమ

ܸఘିଵ + ఙෝഋరఝల(ଵିఘෝ)ల

ఙෝഊ
రఒర

ܸఘିଵ)ݑො൨  

= − ᇲ(ఈෝభ)ఝమ(ଵିఘෝ)మ

ଶఙෝೡమ
1− ఙෝഋమఝమ(ଵିఘෝ)మ

ఙෝഊ
మఒమ

൨∑ ݂
ே
ୀଵ   

+ ᇲ(ఈෝభ)(ఝమ(ଵିఘෝ)మ

ଶఙෝೡర
ݑොᇱ ܸఘିଵ(1 − 2 ఙෝഋమఝమ(ଵିఘෝ)మ

ఙෝഊ
మఒమ

+ ఙෝഋరఝర(ଵିఘෝ)ర

ఙෝഊ
రఒర

∑ො൨ݑ( ݂
ே
ୀଵ   

= ᇲ(ఈෝభ)(ఝమ(ଵିఘෝ)మ

ଶఙෝೡర
∑ ݂
ே
ୀଵ ݑොᇱ ܸఘିଵ ൬1− 2 ఙෝഋమఝమ(ଵିఘෝ)మ

ఙෝഊ
మఒమ

+ ఙෝഋరఝర(ଵିఘෝ)ర

ఙෝഊ
రఒర

൰ − ൬1− ఙෝഋమఝమ(ଵିఘෝ)మ

ఙෝഊ
మఒమ

൰൨  

=
ℎᇱ(ߙොଵ)(߮ଶ(1− ො)ଶߩ

ො௩ସߪ2
 ݂

ே

ୀଵ

ቈݑොᇱ ܸఘିଵ ቆ1− 2
ොఓଶ߮ଶ(1ߪ − ො)ଶߩ

መଶߣොఒଶߪ
+
−ොఓସ߮ସ(1ߪ ො)ସߩ

መସߣොఒସߪ
ቇݑො − 1 +

−ොఓଶ߮ଶ(1ߪ ො)ଶߩ

መଶߣොఒଶߪ
 

= ᇲ(ఈෝభ)(ఝమ(ଵିఘෝ)మ

ଶఙෝೡర
∑ ݂
ே
ୀଵ ൬ݑොᇱܣመݑො − 1 + ఙෝഋమఝమ(ଵିఘෝ)మ

ఙෝഊ
మఒమ

൰ ,        ݇ = 1, … ,  (32)      

Equation (32) is the solution obtained after maximization of the first order condition, where  ܣመ = ܸఘିଵ ൬1−

2 ఙෝഋమఝమ(ଵିఘෝ)మ

ఙෝഊ
మఒమ

+ ఙෝഋరఝర(ଵିఘෝ)ర

ఙෝഊ
రఒర

൰ ොݑ, = ݕ − ,ܪ መீௌ is the maximum likelihood residuals underߚݔ መߚ ,ො௩ଶߪ,  ොଵ is theߙ ොఓଶ andߪ

maximum likelihood estimates of ߪ,ߚ௩ଶ,ߪఓଶ,ߪఒଶ ܽ݊݀ ߙଵ respectively. 

All components of the above score test statistic డ
డఎ

(∙) evaluated at ̂ߟ are equal to zero except  డ
డఈ

 (Kouassi et al., 

2014). Also, ߪොఓଶ  is the value of ℎ(ߙොଵ) and ℎᇱ(ߙොଵ) is the evaluated value of ߲ℎ( í݂
ᇱߙ)/߲ í݂

ᇱ  when ߙଵ = ଵߙ = ⋯ =
ߙ = 0. In addition, ݎݐ൫ ܸఘିଵ்ܬ൯ = ߮ଶ(1− ൫ݎݐ  ො)ଶ andߩ ܸఘିଵ்ܬ ܸఘିଵ்ܬ൯ = ߮ସ(1 −  .ො)ସߩ
Thus, the partial derivatives under ܪ are expressed in vector form as 

(ߟ̂)ܦ =

⎝

⎜
⎛

0
0
0
0

⎠(ොߙ)ܦ

⎟
⎞

=

⎝

⎜⎜
⎛

0
0
0
0

ᇲ(ఈෝభ)ఝమ(ଵିఘෝ)మ

ଶఙෝೡర
⎠݃′ܨ

⎟⎟
⎞

                  (33) 

Where  ܦ(ߙො) = ቀ(ߙොଵ),ܦ(ߙොଶ), … ො൯ቁߙ൫ܦ,
ᇱ
ܨ, = ( ଵ݂, … , ே݂)ᇱܽ݊݀ ݃ = (݃ଵ, … ,݃ே) where ݃ = ොݑመܣොᇱݑ − 1 +

ఙෝഋమఝమ(ଵିఘෝ)మ

ఙෝഊ
మఒమ

 

Also, we obtain information matrix under the null hypothesis as follow 

ܧ ቂ− డమ

డఎడఎᇲ
ቃ  = ଵ

ଶ
ݎݐ ቂΣିଵ ቀడஊ

డఎ
ቁ Σିଵ డஊ

డఎᇱ
ቃ                                                                                                  

ܧ ቂ− డమ
డఉడఉᇲ

ቃ = ଵ
ଶ
  ଶ[ Σିଵܺ′ܺ]ݎݐ

= ଵ
ଶ
[ Σିଵܺ ܺ′Σିଵܺ′ܺ]ݎݐ = ܰ


ሱሮ∞ ቂᇱஊ

షభ
ே்

ቃ =    (ߟ̂)ఉఉܫ

ܧ ቂ− డమ
డఉడఙೡమ

ቃ = ଵ
ଶ
ݎݐ ܺ′Σିଵܺ ଵ

ఙೡమ
൜(ܫே⨂்ܫ)− ൬ ఙഋమ

ఙഊ
మఒమ
൰ ൫ܫே⊗ ఘܸ

ିଵ்ܬ൯ൠ൨ = 0  

ቀܧ ݁ܿ݊݅ݏ ቂ− డమ
డఉడఙೡమ

ቃ
ே,்⟶ஶ
ሱ⎯⎯⎯⎯ሮ 0ቁ  
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ܧ − డమ
డఉడఙഋమ

൨ = ଵ
ଶ
ݎݐ ܺ′Σିଵܺ ଵ

ఙೡమ
൜൫ܫே⨂ ఘܸ

ିଵ்ܬ൯ − ൬ ఙഋమ

ఙഊ
మఒమ
൰൫ܫே ⊗ ఘܸ

ିଵ்ܬ ఘܸ
ିଵ൯ൠ ൨ = 0  

൬ܧ ݁ܿ݊݅ݏ − డమ
డఉడఙഋమ

൨
ே,்⟶ஶ
ሱ⎯⎯⎯⎯ሮ 0൰  

ܧ − డమ
డఉడఙഊ

మ൨ = ଵ
ଶ
ݎݐ ܺ′Σିଵܺ ଵ

ఙೡమ
൜൫ܫேܫேᇱ⨂ ఘܸ

ିଵ൯ − ൬ ఙഋమ

ఙഊ
మఒమ
൰൫ܫேܫேᇱ ⊗ ఘܸ

ିଵ்ܬ ఘܸ
ିଵ൯ൠ൨ = 0  

൬ܧ ݁ܿ݊݅ݏ − డమ
డఉడఙഊ

మ൨
ே,்⟶ஶ
ሱ⎯⎯⎯⎯ሮ 0൰   

ቂ− డమ
డఉడఈೖ

ቃ = ଵ
ଶ
ݎݐ ܺ′Σିଵܺ ᇲ(ఈభ)

ఙೡమ
൜൫݀݅ܽ݃( ݂)⨂ ఘܸ

ିଵ்ܬ൯  − ൬ ఙഋమ

ఙഊ
మఒమ
൰ ൫݀݅ܽ݃( ݂)⊗ ఘܸ

ିଵ்ܬ ఘܸ
ିଵ்ܬ൯ൠ൨  

= 0 ቀܧ ݁ܿ݊݅ݏ ቂ− డమ
డఉడఘ

ቃ
ே,்⟶ஶ
ሱ⎯⎯⎯⎯ሮ 0ቁ  

ܧ ቂ− డమ
డఙೡర

ቃ = ଵ
ଶ
ݎݐ  ଵ

ఙೡమ
൜(ܫே⨂்ܫ)− ൬ ఙഋమ

ఙഊ
మఒమ
൰൫ܫே ⊗ ఘܸ

ିଵ்ܬ൯ൠ ൨
ଶ
  

= ே்
ଶఙෝೡర

− ேఙෝഋమఝమ(ଵିఘෝ)మ

ఙෝഊ
మఒమఙෝೡర

+ ேఙෝഋరఝర(ଵିఘෝ)ర

ଶఙෝೡరఙෝഊ
రఒర

= ே்
ଶఙෝೡర

൬1− 2 ఙෝഋమఝమ(ଵିఘෝ)మ

்ఙෝഊ
మఒమ

+ ఙෝഋరఝర(ଵିఘෝ)ర

்ఙෝഊ
రఒర

൰ = ଵ
ଶ

  ௩ସ(ොߪ)

ܧ − డమ
డఙೡమడఙഋమ

൨ = ଵ
ଶ
ݎݐ ቈ ଵ

ఙೡమ
ቆ(ܫே⨂்ܫ)− ൬ ఙഋమ

ఙഊ
మఒమ
൰ ൫ܫே⊗ ఘܸ

ିଵ்ܬ൯ቇ
ଵ
ఙೡమ
ቆ൫ܫே⨂ ఘܸ

ିଵ்ܬ൯− ൬ ఙഋమ

ఙഊ
మఒమ
൰ ൫ܫே⊗ ఘܸ

ିଵ்ܬ ఘܸ
ିଵ൯ቇ = 0  

  ൬ܧ ݁ܿ݊݅ݏ − డమ
డఙೡమడఙഋమ

൨
ே,்⟶ஶ
ሱ⎯⎯⎯⎯ሮ 0൰ 

ܧ − డమ
డఙೡమడఙഊ

మ൨ = ଵ
ଶ
ݎݐ ቈ ଵ

ఙೡమ
ቆ(ܫே⨂்ܫ)− ൬ ఙഋమ

ఙഊ
మఒమ
൰ ൫ܫே ⊗ ఘܸ

ିଵ்ܬ൯ቇ
ଵ
ఙೡమ
ቆ൫ܫேܫேᇱ⨂ ఘܸ

ିଵ൯ − ൬ ఙഋమ

ఙഊ
మఒమ
൰൫ܫேܫேᇱ ⊗ ఘܸ

ିଵ்ܬ ఘܸ
ିଵ൯ቇ  

= 0  ൬ܧ ݁ܿ݊݅ݏ − డమ
డఙೡమడఙഊ

మ൨
ே,்⟶ஶ
ሱ⎯⎯⎯⎯ሮ 0൰ 

ቂ− డమ
డఙೡమడఈೖ

ቃ = ଵ
ଶ
ݎݐ ቈ ଵ

ఙೡమ
ቆ(ܫே⨂்ܫ)− ൬ ఙഋమ

ఙഊ
మఒమ
൰ ൫ܫே ⊗ ఘܸ

ିଵ்ܬ൯ቇ
ᇲ(ఈభ)
ఙೡమ

ቆ൫݀݅ܽ݃( ݂)⨂ ఘܸ
ିଵ்ܬ൯  − ൬ ఙഋమ

ఙഊ
మఒమ
൰ ൫݀݅ܽ݃( ݂)⊗

ఘܸ
ିଵ்ܬ ఘܸ

ିଵ்ܬ൯ቇ = ᇲ(ఈෝభ)(ఝమ(ଵିఘෝ)మ

ଶఙෝೡర
ܨ ൬1− ఙෝഋమఝమ(ଵିఘෝ)మ

ఙෝഊ
మఒమ

൰
ଶ

= 0 ൬ܧ ݁ܿ݊݅ݏ − డమ
డఙೡమడఙഊ

మ൨
ே,்⟶ஶ
ሱ⎯⎯⎯⎯ሮ 0൰ 

ܧ − డమ
డఙഋర

൨ = ଵ
ଶ
ݎݐ ቈ ଵ

ఙෝೡమ
ቆ൫ܫே⨂ܸఘିଵ்ܬ൯ − ൬ ఙෝഋమ

ఙෝഊ
మఒమ
൰ ൫ܫே ⊗ ܸఘିଵ்ܬ ܸఘିଵ൯ቇ

ଶ

 = ேఝర(ଵିఘෝ)ర

ଶఙෝೡర
൬1− 2 ఙෝഋమఝమ(ଵିఘෝ)మ

ఙෝഊ
మఒమ

+ ఙෝഋర

ఙෝഊ
రఒర
൰ = ଵ

ଶ
ఓସ(ොߪ)   

ܧ − డమ
డఙഋమడఙഊ

మ൨ = ଵ
ଶ
ݎݐ ቈ ଵ

ఙෝೡమ
ቆ൫ܫே⨂ܸఘିଵ்ܬ൯ − ൬ ఙෝഋమ

ఙෝഊ
మఒమ
൰ ൫ܫே ⊗ ܸఘିଵ்ܬ ܸఘିଵ൯ቇ

ଵ
ఙෝೡమ
ቆ൫ܫேܫேᇱ⨂ܸఘିଵ൯ − ൬ ఙෝഋమ

ఙෝഊ
మఒమ
൰൫ܫேܫேᇱ ⊗
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మ൨
ே,்⟶ஶ
ሱ⎯⎯⎯⎯ሮ 0൰  

ܧ − డమ
డఙഋమడఈೖ

൨ ଵ
ଶ

= ݎݐ ቈ ଵ
ఙෝೡమ
ቆ൫ܫே⨂ܸఘିଵ்ܬ൯ − ൬ ఙෝഋమ
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మఒమ
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ఙෝೡమ
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൬ ఙෝഋమ

ఙෝഊ
మఒమ
൰ ൫݀݅ܽ݃( ݂) ⊗ ܸఘିଵ்ܬ ܸఘିଵ்ܬ൯ቇ  =

ᇲ(ఈෝభ)ఝర(ଵିఘෝ)ర

ଶఙෝೡర
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ᇲ ி
ே
ቃ  

ܧ − డమ
డఙഊ

ర൨ = ଵ
ଶ
ݎݐ ቈ ଵ
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ቆ൫ܫேܫேᇱ⨂ܸఘିଵ൯ − ൬ ఙෝഋమ

ఙෝഊ
మఒమ
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൬1− ఙෝഋమఝమ(ଵିఘෝ)మ

ఙෝഊ
మఒమ

൰
ଶ

= ଵ
ଶ

 ఒସ(ොߪ)

ܧ − డమ
డఙഊ

మడఈೖ
൨ = ଵ

ଶ
ݎݐ ቈ ଵ

ఙෝೡమ
ቆ൫ܫேܫேᇱ⨂ܸఘିଵ൯ − ൬ ఙෝഋమ

ఙෝഊ
మఒమ
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ఙෝೡమ
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൬ ఙෝഋమ
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మఒమ
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డఙഊ
మడఈೖ

൨
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= ᇲ(ఈෝభ)మ

ଶఙෝೡర
ݎݐ ൫݀݅ܽ݃( ݂ ݂)⨂ܸఘିଵ்ܬ ܸఘିଵ்ܬ൯ − 2 ൬ ఙෝഋమ

ఙෝഊ
మఒమ
൰൫݀݅ܽ݃( ݂ ݂)⊗ ܸఘିଵ்ܬ ܸఘିଵ்ܬ ܸఘିଵ்ܬ൯+

൬ ఙෝഋర

ఙෝഊ
రఒర
൰ ൫݀݅ܽ݃( ݂ ݂) ⊗ ܸఘିଵ்ܬ ܸఘିଵ்ܬ ܸఘିଵ்ܬ ܸఘିଵ்ܬ൯൨ =

ᇲ(ఈෝభ)మఝర(ଵିఘෝ)ర

ଶఙෝೡర
ܰ


ሱሮ∞ቂிᇱி

ே
ቃ  

Thus, information matrix under the null hypothesis can be obtained as a symmetric matrix of the form (ߟ̂)ܫ =

⎝

⎜
⎜
⎜
⎜
⎛

(ଶߟ̂)ఉఉܫ 0          0                                     0                                                0
0 ଵ

ଶ
௩ସ(ොߪ)           0                                  0                                            0 

0
0
0

0
0
0

     

ଵ
ଶ

ఓସ(ොߪ)

0
ᇲ(ఈෝభ)ఝర(ଵିఘෝ)ర

ଶఙෝೡర
ܰ


ሱሮ∞ቂூಿ

ᇲ ி
ே
ቃ

    0
         ଵ

ଶ
ఒସ(ොߪ)

   0
       

ᇲ(ఈෝభ)ఝర(ଵିఘෝ)ర

ଶఙෝೡర
ܰ


ሱሮ∞ ቂூಿ

ᇲ ி
ே
ቃ

       0
ᇲ(ఈෝభ)మఝర(ଵିఘෝ)ర

ଶఙෝೡర
ܰ


ሱሮ∞ቂிᇱி

ே
ቃ⎠

⎟
⎟
⎟
⎟
⎞

  (34) 

Thus, a conditional ܯܮ statistic under the specified ܪ is given as 
ఈ|ఘܯܮ =  (35)                                                                                        (ොߙ)ܦ[ଵ|ఈఈି(((ߟ̂)ܫ)ே்ܫ)]′(ොߙ)ܦ

    Where           ((ߟ̂)ܫ)ିଵ|ఈఈ = ᇲ(ఈෝభ)మఝర(ଵିఘෝ)ర

ଶఙෝೡర
ܰ


ሱሮ∞ቂଵ

ே
ᇱܨ ቀܫே −

ூಿூಿᇲ

ே
ቁܨቃ  

Under ܪ,ܯܮ statistic is asymptotically distributed as ߯ 
ଶ ܶ,ܰ ݏܽ  → ∞ 

2. Results and Discussion: 
The results of the three models fitted from the analytical techniques discussed and that of the test carried 
out to showcase the periodicity effects as occasioned by the presence of serial correlation, on the predictive 
ability of POLS are presented and discussed in this section 
 

Table 1: Presentation of Pooled OLS Results 
Variables Coefficients Standard Error t-value Pr(>|t|) 
Intercept 120,970 10,011 12.0840 0.0000 
PBT 80,588 0.00027278 2.9543 0.0036 
TA -260,960 0.000012963 -2.0131 0.0458 
TL 8,048,200 0.0000035418 2.2724 0.0244 
SHF 25,419 0.00012246 2.0757 0.0396 
 
                                     
                                   Table 2: Conditional Lagrange Multiplier Test for serial correlation  

Chi-Squared Degree of Freedom P-value 
35.3806 10 0.0001075 

 
Table 3: Presentation of LSDVM Results that Accounts for Only Time Effects 
Variables Coefficients Standard Error t-value Pr(>|t|) 
Intercept 42,820 23810 1.799 0.074138 
PBT -0.0003292   0.00001201 -2.741 0.006900 
TA 0.0007216    0.0002691 2.681 0.008175 
TL 0.00000668 0.000003255 2.055 0.041701 
SHF 0.0007216 0.0002691 2.681 0.008175 
YEAR- 2007 0.0002586 0.000115 2.249 0.026005 
            2008 0.0002628 0.0003391 0.775 0.439568 
            2009 0.0009526 0.0003445 2.765 0.006422 
            2010 0.0008981 0.0003379 2.658 0.008741 
            2011 0.00001142 0.0003398 3.362 0.000989 
            2012 0.0008981 0.000339 2.658 0.008741 
            2013 0.00001253 0.0003421 3.664 0.000347 
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            2014 0.00001561  0.0003463 4.507 0.0000134 
            2015 0.00001613 0.0003615 4.461 0.0000162 
 
 
Table 4: Presentation of Random Effect Model Results that Accounts for Both Individual and Time Effects 
(Twoways effects Model) 
Effects Variance Standard Dev Shares Theta (Lambda) 
idiosyncratic  5809000000 76210 0.746 - 
individual  1894000000 43520 0.243 0.5155 
time  85800000 9263 0.011 0.1006 
Total - - - 0.08774 
Variables Coefficients Standard Error t-value Pr(>|t|) 
Intercept 130400 130400 1.6386 0.0000 
PBT 0.00061736 26438 2.3351 0.02082 
TA -0.000011315 0.000013033 0.8682 0.38664 
TL 0.0000079030 0.000003179 2.4860 0.01398 
SHF 0.000099058    0.00012030 0.8234 0.41152 
 
 
 

Table 5: Presentation Hausman Test Results 
Chi square Df p-value 
1193.6 4 0.0000 

 
The specified models for POLS, LSDVM and REM from tables 1-3 respectively are given as follows:  
ܨܣ = 120,970 + ܶܤ80,588ܲ − ܣ260,960ܶ + ܮ8,048,200ܶ +   (30)                     ܨܪ25,419ܵ
(ܴଶ = 0.2043, തܴଶ = ܨ,0.2523 = ܲ,(4,155)ܨܦ,13.6451 − ݁ݑ݈ܽݒ = 0.0000)  
መଶ൯ߚ൫݁ݏ) = 0.00027278, መଷ൯ߚ൫݁ݏ = 0.000012963, መସ൯ߚ൫݁ݏ = 0.000035418, መହ൯ߚ൫݁ݏ = 0.00012246)  
ܨܣ   = 42,820− ܶܤܲ  0.0003292 + ܣܶ   0.0007216 + ܮ0.00000668ܶ +  (31)   ܨܪ0.0007216ܵ
 (ܴଶ = 0.4395, തܴଶ = ܨ,0.3896 = ܲ,(13.146)ܨܦ,8.807 − ݁ݑ݈ܽݒ = 0.0000)  
መଶ൯ߚ൫݁ݏ) = 0.00001413, መଷ൯ߚ൫݁ݏ = 0.000003303, መସ൯ߚ൫݁ݏ = 0.00002772, መହ൯ߚ൫݁ݏ = 0.00001289)  
ܨܣ = 130,400 + ܶܤ0.000062ܲ − ܣ0.000011ܶ + ܮ0.0000079ܶ +  (32)                    ܨܪ0.000099ܵ
(ܴଶ = 0.15611, തܴଶ = ܨ,0.15611 = ܲ,(4,155)ܨܦ,7.16815 − ݁ݑ݈ܽݒ = 0.0000)  
መଶ൯ߚ൫݁ݏ) = 0.00001201, መଷ൯ߚ൫݁ݏ = 0.00002691, መସ൯ߚ൫݁ݏ = 0.000003255, መହ൯ߚ൫݁ݏ = 0.00002691)  
 
The three specified models are statistically significant based on their P-values which are less than 0.05 while there 
coefficient of determination, ܴଶ indicates that our exogenous variables explained  20.43%, 43.95% and 15.61% 
variation in the audit fees of Nigerian banks for the years under review respectively for POLS, LSDVM and REM.  
Meanwhile, the standard errors of regression coefficients for the POLS model are a bit higher than that of LSDV and 
REM models. The POLS’s standard errors was due to the inefficiency of POLS estimator as induced by the presence 
of  serial correlation while that of LSDV was equally due to the same reason as well as loss of degree of freedom 
from 155 to 146 as a result of dummy variables put into used.  
The fact that serial correlation is present in the POLS estimator was established through the conduct of LM test. The 
LM result is chi squared distributed with value of 35.3806 and a P-value of 0.0001075, which is far less than the 
critical value of 0.05. This result prompts the rejection of our null hypothesis and thereby validates the presence of 
serial correlation in the POLS residual i.e ߟ)ݎݎܥ௧ (௦ߟ, ≠ 0. 
The LSDVM seems to be a better model to explain the specified audit fees model as a result of its lower standard 
errors and higher coefficient of determination, and this is further confirmed by its preference based on Hausman test. 
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3. Conclusion: 
Various results obtained in this work generally showed that the behaviours of the three estimators investigated for 
modeling audit fees vary due to violation of serial correlation assumption. The efficiency of these methods for 
estimating audit fees model with violation of serial correlation assumptions has been addressed. 
Failure of the serial correlation assumption makes the POLS estimators to be biased and imprecise. For POLS to be 
accurately used in estimating the parameters of panel data models, errors have to be independent and homoscedastic. 
These conditions are so atypical and mostly unrealistic in many real life situations that would have warranted the use 
of POLS for modeling panel data efficiently. 
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