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ABSTRACT 

AMS Subject Classification [2000]: 47H10,54H25,46J10, 46J15. 

The purpose of this article  is to generalize the result of  W. Sintunavarat and P. 

Kumam [29]. We also give an example in support of our theorem for which result of 

W. Sintunavarat and P. Kumam [29] is not true. Moreover we establish the existence 

and convergence theorems of coupled best proximity points in metric spaces, we 

applied this results to a uniformly convex Banach space. 
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1.Introduction and Preliminaries 

The metric fixed point theory is very important and useful in mathematics. It can be applied in various areas to 

find the solution, for instant, in computer science, optimization, approximation theory, image processing as well 

as in economical problems. The first result of fixed point theorem is given by  Banach S. [4] by the general 

setting of complete metric space using which is known as Banach Contraction Principle. There are many 

researchers generalized this contraction principle in different directions, refer to [2],[9],[10],[24],[33],[34],[40]. 

In 1969, one of the most beautiful generalization of Banach contraction principle [4] is presented by Fan [12] 

which is known as  best approximation theorem.  

Theorem-1 If A is a nonempty convex subset of a Hausdorff locally convex topological vector space B and 

→ ܣ :ܵ ,ݔ)݀ is continuous mapping, then there exists an element x ∈ A such that ܤ  (ݔܵ  =  .(ܣ,ݔܵ)݀ 

The concept of coupled best proximity point theorem is introduced by  W. Sintunavarat and P. Kumam [29] and 

proved coupled best proximity theorem for cyclic contraction. It should be clear that we can find a best 

proximity point in place of fixed point, if the fixed point does not exist. This best proximity point is very close 

to the fixed point. If this distance is equal to zero then the best proximity point is called fixed point. Here one of 

the two things is important for best proximity point either distance must be equal to zero or very near to zero. If 

this condition is not satisfied then the point is not a best proximity point. In this condition we move to find ICS 

function which provides the distance must be close to zero. So our purpose of this article is to generalize the 

result of [29] also we give an example in support of our main theorem. 

Now we recall some basic definitions and examples that are related to the main results of this article. 

Throughout this article we denote by ܰ the set of all positive integers and by ܴ the set of all real numbers. For 

nonempty subsets A and B of a metric space (ܺ,݀), we let 

(ܤ,ܣ)݀     = ,ݔ)݀ }  ݂݊݅  ݔ :(ݕ ∈ ݕ  ݀݊ܽ  ܣ  ∈    {ܤ 

stand for the distance between A and B. 

A Banach spaces X is said to be 

i. strictly convex if the following implication holds for all  ݔ, ݕ ∈ ܺ: 

‖ ݔ ‖     = ‖ ݕ ‖ = ݔ   ݀݊ܽ  1  ≠ ⇒  ݕ  ቛ௫ ା ௬
ଶ

  ቛ  <  1.    

ii. uniformly convex if for each ߳ with  0 <  ߳ ≤  2, there exists  ߜ >  0 such that the following 

implication holds for all ݔ, ݕ ∈  ܺ: 

≥‖ ݔ ‖        ≥‖ ݕ‖,1  − ݔ‖   ݀݊ܽ   1  ‖ݕ  ≥ ߳ ⇒    ቛ௫ ା ௬
ଶ

 ቛ  <  1 −   .ߜ  

It is easy to see that a uniformly convex Banach space X is strict but the converges is not true. 

Definition-2 [41] Let A and B be nonempty subsets of a metric space (ܺ, ݀). The ordered pair (ܤ,ܣ) satisfies 

the property UC if the following holds: 

If { ݔ} and { ݖ } are sequences in ܣ  and { ݕ} is a sequence in ܤ  such that ݀(ݔ (ݕ, →  and (ܤ,ܣ)݀ 

ݖ)݀ (ݕ, → ,ݔ)݀ then ,(ܤ,ܣ)݀  (ݖ →  0. 

Example-3 Let ܣ and ܤ be nonempty subsets of a metric space (ܺ,݀). The following are examples of  a pair of 

nonempty subsets (ܤ,ܣ) satisfying the property UC. 

i. Every pair of nonempty subsets A,B of a metric space (X,d) such that d(A,B) = 0. 

ii. Every pair of nonempty subsets A,B of a uniformly convex Banach space X  such that A  is convex. 
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iii.  Every pair of nonempty subsets A,B of a strictly convex Banach space which A  is convex and 

relatively compact and the closure of B  is weakly compact. 

Definition- 4[39] Let A and B be nonempty subsets of a metric space (X,d). The ordered pair (A,B) satisfies the 

property ܷܥ∗ if (A,B) has property UC and the following condition holds: 

If { ݔ} and { ݖ} are sequences in A  and { ݕ} is a sequence in B  satisfying: 

i. ݀(ݖ (ݕ, →  (ܤ,ܣ)݀ 

ii. For every ߳ >  0  there exists ܰ ∈  ࣨsuch that 

ݔ)݀     (ݕ, ≤ + (ܤ,ܣ)݀  ߳  

for all ݉ >  ݊ ≥  ܰ. 

Then for every ߳ >  0 there exists ଵܰ ∈   ࣨ   such that 

ݔ)݀     , (ݖ ≤ + (ܤ,ܣ)݀  ߳  

for all ݉ >  ݊ ≥  ଵܰ. 

Example-5[39]  Let A and B be nonempty subsets of a metric space (X,d). 

The following are examples of a pair of nonempty subsets (A,B) satisfying the property ܷܥ∗. 

i. Every pair of nonempty subsets A,B of a metric space (X,d) such that ݀(ܤ,ܣ)  =  0. 

ii.  Every pair of nonempty closed subsets A,B of a uniformly convex Banach space X  such that A  is 

convex. 

Definition-6 Let A and B be nonempty subsets of a metric space (X,d) and ܵ: ܣ →  be a mapping. A point ܤ 

ݔ ∈  is said to be a best proximity point of S if it satisfies the condition that ܣ 

(ݔܵ,ݔ)݀      =   .(ܤ,ܣ)݀ 

It can be observed that a best proximity point reduces to a fixed point if the underlying mapping is a self 

mapping. 

Definition- 7[13] Let A  be a nonempty subset of a metric space X  and ܣ :ܨ× → ܣ  ,ݔ) A point .ܣ  (ݕ ∈ ×ܣ  

 is called a coupled fixed point of F  if  ܣ 

= ݔ      = ݕ    ,(ݕ,ݔ)ܨ    .(ݔ,ݕ)ܨ 

2. Coupled best proximity point theorems 

In this section we study the existence and convergence of coupled best proximity points for cyclic contraction 

pair. 

Definition-8 Let (X,d) be a metric space. A mapping ܶ:ܺ →  ܺ is said to be ICS if T is injective, continuous and 

has the property: for every sequence { ݔ} in X, if { ܶݔ} is convergent then { ݔ} is also convergent. 

 

In this paper we give some coupled best proximity point theorems for mapping having the mixed monotone 

property in partially ordered metric space depended on ICS function, called T-cyclic contraction which is 

generalization of the main results of W. Sintunavarat and P. Kumam [29]. 

Definition-9 Let A and B be nonempty subsets of a metric space X and ܣ  :ܨ× → ܣ   .ܤ 

An ordered coupled (ݔ, (ݕ ∈ ×ܣ   ,is called a coupled best proximity point of F if ܣ 

    ݀൫ݔ)ܨ,ݔ, ൯(ݕ  =  ݀൫(ݔ,ݕ)ܨ,ݕ൯  =   .(ܤ,ܣ)݀ 

It is easy to see that if ܣ =  in Definition-9, then a coupled best proximity point reduces to a coupled fixed ܤ 

point. 
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Next,W. Sintunavarat and P. Kumam [29] introduced the notion of a cyclic contraction for two mappings which 

as follows. 

Definition-10 Let A and B be nonempty subsets of a metric space X, ܣ  :ܨ× → ܣ  ×ܤ  :ܩ and ܤ  → ܤ   The .ܣ 

ordered pair (ܩ,ܨ) is said to be a cyclic contraction if there exists a non-negative number ߙ <  1 such that 

   ݀൫ݔ)ܨ, ,ݑ)ܩ,(ݕ ൯(ݒ ≤ ఈ
ଶ

,ݔ)݀]   + (ݑ − 1) + [(ݒ,ݕ)݀     (ܤ,ܣ)݀( ߙ 

for all (ݕ,ݔ) ∈ ×ܣ  ,ݑ) and ܣ  (ݒ ∈ ܤ  ×  . ܤ 

Now we introduced the following notion of T-cyclic contraction for two mappings which is generalization of 

[29] as follows.  

Definition- 11 Let T be an ICS mapping such that ܶ: ܺ →  ܺ  and let A and B be nonempty subsets of a metric 

space X, ܣ  :ܨ× →  ܣ  ܤ  :ܩ and ܤ  × →  ܤ   The ordered pair (F,G) is said to be a T-cyclic contraction if .ܣ 

there exists a non-negative number ߙ  <  1 such that 

    ݀൫ܶݔ)ܨ, ൯(ݒ,ݑ)ܩܶ,(ݕ ≤  ఈ
ଶ

ݔܶ)݀]  (ݑܶ,  + [(ݒܶ,ݕܶ)݀    +  (1 −   ൯(ܤ,ܣ)൫݀ܶ( ߙ 

for all (ݕ,ݔ) ∈ ×ܣ  ,ݑ) and ܣ  (ݒ ∈ ܤ   ×  . ܤ 

Note that if (F,G) is a T-cyclic contraction, then (G,F) is also a T-cyclic contraction. Also if we take T be an 

identity mapping in Definition-11  then we get Definition-10. 

The following example shows that Definition-11 is the generalization of Definition-10. 

Example-12  Let ܺ =  ܴ  with the usual metric ݀(ݕ,ݔ) = ∣ − ݔ  ݕ  ∣   and ܶݔ = + ݔ   1 also ܣ = ቂଷ
ଶ

, ହ
ଶ
ቃ and 

= ܤ ቂ− ହ
ଶ

,− ଷ
ଶ
ቃ. It easy to see that ݀(ܤ,ܣ)  =  3. Define ܣ :ܨ× →  ܣ  ×ܤ  :ܩ and ܤ  →  ܤ   by ܣ 

,ݔ)ܨ    (ݕ = ௫ ି ௬ – 
ସ

    and   ݔ)ܩ, (ݕ = ௫ ି ௬ ା ଵ
ସ

. 

For arbitrary (ݕ,ݔ) ∈ ×ܣ   , ܣ  ,ݑ) (ݒ ∈ ×ܤ   =  ߙ and fixed  ܤ  ଵ
ଶ
, we get 

   ݀൫ܶݔ)ܨ, ,ݑ)ܩܶ,(ݕ ൯(ݒ   =   ቚ௫ ି ௬  ି ା ସ
ସ

 – ௨ ି ௩ ା ଵ ା ସ
ସ

ቚ  

       ≤  ∣ ௫ ି ௨∣ ା ∣ ௬ ି ௩∣ 
ସ

 +   2  

        =  ఈ
ଶ

(ݑܶ,ݔܶ)݀ ] + [(ݒܶ,ݕܶ)݀     + (1 −

 .൯(ܤ,ܣ)൫݀ܶ( ߙ 

This implies that (F,G) is a T- cyclic contraction with  ߙ  =  ଵ
ଶ
 

The following lemma plays an important role in our main results. 

Lemma- 13 Let ܶ: ܺ →  ܺ  be an ICS mapping also A and B be nonempty subsets of a metric space X, 

×ܣ  :ܨ →  ܣ  ܤ  :ܩ and ܤ  × → ܤ  (ݕ,ݔ) be a T-cyclic contraction. If (ܩ,ܨ) and ܣ  ∈ ×ܣ    and we define  ܣ 

ାଵݔ      = ݔ)ܨ  ାଶݔ     ,(ݕ,  =   (ାଵݕ,ାଵݔ)ܩ 

ାଵݕ      = ݕ)ܨ  , ,(ݔ ାଶݕ  =   (ାଵݔ,ାଵݕ)ܩ 

for all  ݊ ∈   ܰ∪ { 0} , then ݀(ݔ (ାଵݔ, → ,(ܤ,ܣ)݀  (ାଶݔ,ାଵݔ)݀ → ݕ)݀,(ܤ,ܣ)݀  (ାଵݕ, →  and (ܤ,ܣ)݀ 

,ାଵݕ)݀ (ାଶݕ →  .(ܤ,ܣ)݀ 

Proof: For each  ݊ ∈   ܰ, we have 

ݔܶ)݀    = (ାଵݔܶ,   ݀൫ܶܨ(ݔ,ݕ),ܶܩ(ݔିଵ,ݕିଵ)൯  

        ≤  ఈ 
ଶ

ݔܶ)݀]  (ିଵݔܶ, + ݕܶ)݀   [(ିଵݕܶ,    +  (1 −

  ൯(ܤ,ܣ)൫݀ܶ( ߙ 
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Similarly we have 

ݕܶ)݀    = (ାଵݕܶ,   ݀൫ ܶݕ)ܨ ,ିଵݕ)ܩܶ,(ݔ,   ିଵ)൯ݔ

        ≤ ఈ  
ଶ

ݕܶ)݀]  (ିଵݕܶ, + ݔܶ)݀   [(ିଵݔܶ,    +  (1−

  ൯(ܤ,ܣ)൫݀ܶ( ߙ

Therefore, by letting 

   ݀   = + (ାଵݔܶ,ݔܶ)݀    (ାଵݕܶ,ݕܶ)݀ 

and by adding above inequality we have 

   ݀ ≤ ିଵ݀  ߙ   +  2(1−  ൯(ܤ,ܣ)൫݀ܶ( ߙ 

Similarly we can show that 

   ݀ିଵ  ≤ ିଶ݀  ߙ   +  2(1−   ൯(ܤ,ܣ)൫݀ܶ( ߙ

Consequently we have 

   ݀ଵ  ≤ ݀  ߙ   +  2(1−   ൯(ܤ,ܣ)൫݀ܶ( ߙ

If ݀  =  0 then (ݔ, ) is a coupled best proximity point of F and G. Now let ݀ݕ  >  0 for each ݊ ≥  ݉ we have 

  

ݔܶ)݀  (ݔܶ, ≤ + (ିଵݔܶ,ݔܶ)݀   . +(ିଶݔܶ,ିଵݔܶ)݀  . . . . . . . .   (ݔܶ,ାଵݔܶ)݀ +

  

ݕܶ)݀  (ݕܶ, ≤ ݕܶ)݀   + (ିଵݕܶ, . +(ିଶݕܶ,ିଵݕܶ)݀  . . . . . . . .    (ݕܶ,ାଵݕܶ)݀ +
which gives 

ݔܶ)݀    + (ݔܶ, (ݕܶ,ݕܶ)݀   ≤  ݀ିଵ  +  ݀ିଶ  + ݀ିଷ . . . . . . . + ݀  

   ݀ ≤   ݀ߙ   +  2(1 −  ൯(ܤ,ܣ)) ܶ൫݀ߙ 

Taking ݊ →∞ we have 

ݔܶ)݀    + (ାଵݔܶ, ݕܶ)݀  → (ାଵݕܶ,  ܶ൫݀(ܤ,ܣ)൯  

implies that 

ݔܶ)݀    →  (ାଵݔܶ,  ܶ൫݀(ܤ,ܣ)൯  

ݕܶ)݀     (ାଵݕܶ,  →  ܶ൫݀(ܤ,ܣ)൯  

for all  ݊ ∈   ܰ. 

By similar argument, we also have 

(ାଶݔܶ,ାଵݔܶ)݀    →  ܶ൫݀(ܤ,ܣ)൯, and ݀(ܶݕାଵ,ܶݕାଶ) →  ܶ൫݀(ܤ,ܣ)൯.  

Since T is injective mapping so we have   

,ݔ)݀    (ାଵݔ  → ݕ)݀ ݀݊ܽ (ܤ,ܣ)݀  (ାଵݕ,  →  (ܤ,ܣ)݀ 

for all  ݊ ∈   ܰ. 

By similar argument, we also have 

(ାଶݔ,ାଵݔ)݀    → (ାଶݕ,ାଵݕ)݀  and  ,(ܤ,ܣ)݀  →   .(ܤ,ܣ)݀ 

Lemma – 14 Let ܶ: ܺ →  ܺ  be an ICS mapping also let A and B be nonempty subsets of a metric space X  

such that (A,B) and (B,A) have a property UC,  ܣ  :ܨ × →  ܣ  ×ܤ  :ܩ and ܤ  →  ܤ   and let the ordered pair ܣ 

(F,G) is a T- cyclic contraction. If (ݔ,ݕ) ∈ ×ܣ    and define ܣ 

ାଵݔ     = ݔ)ܨ  ,(ݕ, ାଶݔ  = ାଵݕ  and  (ାଵݕ,ାଵݔ)ܩ   = ݕ)ܨ  , ାଶݕ    ,(ݔ  =

  (ାଵݔ,ାଵݕ)ܩ 
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for all  ݊ ∈  ܰ∪ { 0} , then for  ߳ >  0, 

there exists a positive integer ܰ such that for all ݉ >  ݊ ≥  ܰ 

    ఈ 
ଶ

ݔܶ)݀] (ାଵݔܶ, + ݕܶ)݀   [(ାଵݕܶ,   <  ܶ൫݀(ܤ,ܣ)൯  + ߳.    (2.1) 

Proof : By Lemma-13, we have 

(ାଵݔܶ,ݔܶ)݀     → (ାଶݔܶ,ାଵݔܶ)݀    ,((ܤ,ܣ)݀)ܶ  →  ܶ൫݀(ܤ,ܣ)൯,  

ݕܶ)݀    (ାଵݕܶ, →  ܶ൫݀(ܤ,ܣ)൯,      ݀(ܶݕାଵ,ܶݕାଶ) →  ܶ൫݀(ܤ,ܣ)൯.  

Since (A,B) has a property UC, we get 

ݔܶ)݀    (ାଶݔܶ, →  0.  

A similar argument shows that 

ݕܶ)݀    (ାଶݕܶ, →  0. 

As (B,A) has a property UC, we also have 

(ାଷݔܶ,ାଵݔܶ)݀     → (ାଷݕܶ,ାଵݕܶ)݀    ,0  →  0.  

Suppose that (2.1) does not hold. Then there exists ߳′ >  0 such that for all ݇ ∈  ܰ,there is ݉  >  ݊ ≥  ݇ 

satisfying 

    ఈ 
ଶ
ൣ ݀൫ܶݔೖ ೖାଵ൯ݔܶ, +   ݀൫ܶݕೖ ೖାଵ൯൧ݕܶ,  ≥  ܶ൫݀(ܤ,ܣ)൯  + ߳′.  

Further, corresponding to ݊ , we can choose ݉ in such a way that it is the smallest integer with ݉ > ݊  and 

satisfying above relation. 

Then 

    ఈ 
ଶ
ൣ ݀൫ܶݔೖିଶ,ܶݔೖାଵ൯ +   ݀൫ܶݕೖିଶ,ܶݕೖାଵ൯൧  < + ((ܤ,ܣ)݀)ܶ  ߳′.  

Therefore, we get 

  ܶ൫݀(ܤ,ܣ)൯  + ߳′  ≤ ఈ 
ଶ
ൣ ݀൫ܶݔೖ +ೖାଵ൯ݔܶ,   ݀൫ܶݕೖ   ೖାଵ൯൧ݕܶ,

         ≤  ఈ 
ଶ

 ൣ݀൫ܶݔೖ ೖିଶ൯ݔܶ, +  ݀൫ܶݔೖିଶ,ܶݔೖାଵ൯൧ +
ఈ 
ଶ

 ൣ݀൫ܶݕೖ ೖିଶ൯ݕܶ, +

 ݀൫ܶݕೖିଶ,ܶݕೖାଵ൯൧ 

          <  ఈ 
ଶ

 ൣ ݀൫ܶݔೖ +ೖିଶ൯ݔܶ,   ݀൫ܶݕೖ ೖିଶ൯൧ݕܶ,  +  ܶ൫݀(ܤ,ܣ)൯  + ߳′. 

Letting →∞ , we obtain to see that 

     ఈ 
ଶ
ൣ ݀൫ܶݔೖ ೖାଵ൯ݔܶ, +   ݀൫ܶݕೖ ೖାଵ൯൧ݕܶ,  →  ܶ൫݀(ܤ,ܣ)൯  + ߳′. 

By using the triangle inequality, we get 
ఈ 
ଶ

 ൣ ݀൫ܶݔೖ ೖାଵ൯ݔܶ, +   ݀൫ܶݕೖ  ೖାଵ൯൧ݕܶ,

≤  ఈ 
ଶ

 ൣ݀൫ܶݔೖ ೖାଶ൯ݔܶ, +  ݀൫ܶݔೖାଶ,ܶݔೖାଷ൯ +  ݀൫ܶݔೖାଷ,ܶݔೖାଵ൯൧  

       + ఈ 
ଶ
ൣ݀൫ܶݕೖ +ೖାଶ൯ݕܶ,  ݀൫ܶݕೖାଶ,ܶݕೖାଷ൯+

 ݀൫ܶݕೖାଷ,ܶݕೖାଵ൯൧   

   

 = ఈ 
ଶ

݀൫ܶݔೖ +ೖାଶ൯ݔܶ, ݀ ቀܶܩ൫ݔೖାଵ, ,ೖାଶݔ൫ܨܶ,ೖାଵ൯ݕ ೖାଶ൯ቁݕ

+ ݀൫ܶݔೖାଷ,ܶݔೖାଵ൯
൩  
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+ ఈ 
ଶ

݀൫ܶݕೖ ೖାଶ൯ݕܶ, +  ݀ ቀܶܩ൫ݕೖାଵ,ݔೖାଵ൯,ܶܨ൫ݕೖାଶ,ݔೖାଶ൯ቁ

+ ݀൫ܶݕೖାଷ,ܶݕೖାଵ൯
൩ 

         

 ≤ ఈ 
ଶ

[݀൫ܶݔೖ +ೖାଶ൯ݔܶ, ఈ 
ଶ
ቈ
݀൫ܶݔೖାଵ,ܶݔೖାଶ൯+   ݀൫ܶݕೖାଵ,ܶݕೖାଶ൯ 

൯(ܤ,ܣ)൫݀ܶ(  ߙ−1) +
  

       + ݀൫ܶݔೖାଷ,ܶݔೖାଵ൯  

     

+ ఈ
ଶ

 [݀൫ܶݕೖ ೖାଶ൯ݕܶ, + ఈ 
ଶ
ቈ
 ݀൫ܶݕೖାଵ, +ೖାଶ൯ݕܶ   ݀൫ܶݔೖାଵ,ܶݔೖାଶ൯

+ ൫1 – ൯(ܤ,ܣ)൯ܶ൫݀ ߙ 
  

     + ݀൫ܶݕೖାଷ,ܶݕೖାଵ൯ 

    ≤ ቈ  ߙ 
݀൫ܶݔೖ ೖାଶ൯ݔܶ, +  ݀൫ܶݔೖାଷ,ܶݔೖାଵ൯

+ ݀൫ܶݕೖ,ܶݕೖାଶ൯ +  ݀൫ܶݕೖାଷ,ܶݕೖାଵ൯
  

ೖାଶ൯ݔܶ,ೖାଵݔଶൣ݀൫ܶߙ +     +  ݀൫ܶݕೖାଵ,ܶݕೖାଶ൯൧+

 (1 −  .൯(ܤ,ܣ)ଶ)ܶ൫݀ߙ 

Taking ݇ → ∞, we get 

  ܶ൫݀(ܤ,ܣ)൯  + ߳ᇱ ≤ ൯(ܤ,ܣ)ଶ [ ܶ൫݀ߙ   + ߳′]  + (1 − ൯(ܤ,ܣ)ଶ)ܶ൫݀ߙ   =  ܶ൫݀(ܤ,ܣ)൯  +

 ′߳ ଶߙ 

Since T is injective mapping so we have 

+ (ܤ,ܣ)݀ ߳ᇱ ≤ ଶߙ  + (ܤ,ܣ)݀ ]  ߳′]  + (1 − ,ܣ)݀(ଶߙ  (ܤ  =   ′߳ ଶߙ + (ܤ,ܣ)݀ 

which contradicts. Therefore, we can conclude that (2.1) holds. 

Lemma- 15  Let T be an ICS mapping such that ܶ:ܺ →  ܺ also let A and B be nonempty subsets of a metric 

space X, (A,B) and (B,A) satisfy the property ܷܥ∗ . 

Let ܣ :ܨ× →  ܣ  × ܤ  :ܩ,ܤ  →  ܤ  ,ݔ) be a T-cyclic contraction. If (ܩ,ܨ) and ܣ  (ݕ ∈ ×ܣ    and define ܣ 

ାଵݔ     = ݔ)ܨ  ,(ݕ, ାଵݕ   = ݕ)ܨ  ,   (ݔ

and 

ାଶݔ      = ାଶݕ     ,(ାଵݕ,ାଵݔ)ܩ   =   (ାଵݔ,ାଵݕ)ܩ 

for all ݊ ∈  ܰ ∪ { 0 , then { ݔ}, ,{ݕ }  .are Cauchy sequences {ାଵݕ } and {ାଵݔ }

Proof: By Lemma-13, we have ݀(ݔ,ݔାଵ)  → (ାଶݔ,ାଵݔ)݀ and (ܤ,ܣ)݀   →  Since (A,B)  satisfies .(ܤ,ܣ)݀ 

property UC, we get ݀(ݔ (ାଶݔ,  →  0. Similarly, we also have ݀(ݔାଵ,ݔାଷ)  →  0 because (B,A)  satisfies 

property UC. 

We now show that for every ߳ >  0 there exists ܰ ∈  ࣨ such that 

ݔ)݀     (ାଵݔ, ≤ + (ܤ,ܣ)݀  ߳     (2.2) 

for all ݉ >  ݊ ≥  ܰ 

Suppose that (2.2) doesnot hold, then there exists  ߳ >  0 such that for all  ݇ ∈  ܰ  there exists ݉  >  ݊ ≥  ݇ 

such that 

    ݀൫ܶݔೖ ೖାଵ൯ݔܶ,  >  ܶ൫݀(ܤ,ܣ)൯  + ߳.    (2.3) 

Further, corresponding to ݊, we can choose ݉  in such a way that it is the smallest integer with ݉ > ݊  and 

satisfying above relation. 
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Now we have 

     ܶ൫݀(ܤ,ܣ)൯  +  ߳  <  ݀൫ܶݔೖ  ೖାଵ൯ݔܶ,

           ≤  ݀൫ܶݔೖ ೖିଶ൯ݔܶ,  +  ݀൫ܶݔೖିଶ,ܶݔೖାଵ൯  

            ≤  ݀൫ܶݔଶೖ ଶೖିଶ൯ݔܶ,  +  ܶ൫݀(ܤ,ܣ)൯  +  ߳ .  

Taking  ݇ →  ∞ , we have ൫ܶݔଶೖ ଶೖାଵ൯ݔܶ,  → + ((ܤ,ܣ)݀)ܶ   ߳ . 

By Lemma -14, there exists ܰ ∈  ࣨ  such that 

    ఈ 
ଶ
ൣ ݀൫ܶݔೖ ೖାଵ൯ݔܶ, +  ݀൫ܶݕೖ ೖାଵ൯൧ݕܶ,  <  ܶ൫݀(ܤ,ܣ)൯  +  ߳   (2.4) 

for all ݉ >  ݊ ≥  ࣨ.  By using the triangle inequality, we get 

   ܶ൫݀(ܤ,ܣ)൯  + ߳  <  ݀൫ܶݔೖ    ೖାଵ൯ݔܶ,

   ≤  ݀൫ܶݔೖ ೖାଶ൯ݔܶ,  +  ݀൫ܶݔೖାଶ,ܶݔೖାଷ൯  +  ݀൫ܶݔೖାଷ,ܶݔೖାଵ൯  

   =  ݀൫ܶݔೖ ೖାଶ൯ݔܶ,  +  ݀ ቀܶܩ൫ݔೖାଵ, ೖାଶ൯ቁݕ,ೖାଶݔ൫ܨܶ,ೖାଵ൯ݕ  +

 ݀൫ܶݔೖାଷ,ܶݔೖାଵ൯  

   ≤  ݀൫ܶݔೖ ೖାଶ൯ݔܶ,  + ఈ  
ଶ
ൣ݀൫ݔೖାଵ,ݔೖାଶ൯+   ݀൫ݕೖାଵ,ݕೖାଶ൯൧  

       

+ (1 − ൯(ܤ,ܣ)൫݀ܶ( ߙ   +  ݀൫ܶݔೖାଷ,ܶݔೖାଵ൯   

  

 =  ఈ 
ଶ
ቂ݀ ቀܶܨ൫ݔೖ

, ೖݕ
൯,ܶܩ൫ݔೖାଵ,ݕೖାଵ൯ቁቃ  + ఈ 

ଶ
ቂ݀ ቀܶܨ൫ݕೖ

, ೖݔ
൯,ܶܩ൫ݕೖାଵ,ݔೖାଵ൯ቁቃ  

       +(1 − ൯(ܤ,ܣ)൫݀ܶ( ߙ  +  ݀൫ܶݔೖ ೖାଶ൯ݔܶ,  +

 ݀൫ܶݔೖାଷ,ܶݔೖାଵ൯  

   ≤ ఈ  
ଶ

 ఈ 
ଶ
ൣ݀൫ܶݔೖ +ೖାଵ൯ݔܶ,  ݀൫ܶݕೖ ೖାଵ൯ݕܶ,  +  (1 −    ൯൧൨(ܤ,ܣ)൫݀ܶ( ߙ 

     + ఈ 
ଶ
ఈ 
ଶ
ൣ ݀൫ܶݕೖ ೖାଵ൯ݕܶ, +  ݀൫ܶݔೖ ೖାଵ൯ݔܶ,  +  (1 −

   ൯൧ቃ(ܤ,ܣ)൫݀ܶ( ߙ 

   

   + (1 − ൯(ܤ,ܣ)൫݀ܶ( ߙ   +  ݀൫ܶݔೖ ೖାଶ൯ݔܶ,  +  ݀൫ܶݔೖାଷ,ܶݔೖାଵ൯ 

   = ೖݔଶ ൣ ݀൫ܶߙ  ೖାଵ൯ݔܶ, +  ݀൫ܶݕೖ   ೖାଵ൯൧ݕܶ,

     

 + (1 − + ((ܤ,ܣ)݀)ܶ (ଶߙ   ݀൫ܶݔೖ,ܶݔೖାଶ൯  +  ݀൫ܶݔೖାଷ,ܶݔೖାଵ൯ 

   < ((ܤ,ܣ)݀)ܶ ଶߙ   +  ߳ )   + ((ܤ,ܣ)݀)ܶ (ଶߙ – 1)   + ೖݔܶ)݀     (ೖାଶݔܶ,

       

  (ೖାଵݔܶ,ೖାଷݔܶ)݀ + 

   = +  ߳ ଶߙ   ܶ൫݀(ܤ,ܣ)൯+  ݀൫ܶݔೖ ೖାଶ൯ݔܶ,  +  ݀൫ܶݔೖାଷ,ܶݔೖାଵ൯.  

Taking  ݇ →∞, we get 

   ܶ൫݀(ܤ,ܣ)൯  +  ߳  ≤  ܶ൫݀(ܤ,ܣ)൯  +   ߳ ଶߙ 
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which contradicts. Since (2.2) holds and ݀(ܶݔ,ܶݔାଵ)  →  ܶ൫݀(ܤ,ܣ)൯, by using property ܷܥ∗ of (A,B), we 

have { ܶݔ} is a Cauchy sequence. In similar way, we can prove that { ܶݕ},  are Cauchy {ାଵݕܶ } and {ାଵݔܶ }

sequences. 

Since T is ICS mapping, i.e T is injective mapping, we have { ݔ}, ,{ݕ }  are a Cauchy {ାଵݕ } and {ାଵݔ }

sequences.  

Here we state the main results of this article in the existence and convergence of coupled best proximity points 

for cyclic contraction pairs on nonempty subsets of metric spaces satisfying the property ܷܥ∗. 

Theorem-16 Let T be an ICS mapping on X and A and B be nonempty closed subsets of a metric space X such 

that (A,B) and (B,A) have a property ܷܣ  :ܨ,∗ܥ× →  ܣ  ܤ :ܩ and ܤ  × →  ܤ   and let the ordered pair (F,G) ܣ 

is a T- cyclic contraction. If (ݔ,ݕ) ∈ ×ܣ    and define  ܣ 

ାଵݔ      = ݔ)ܨ  ାଵݕ   ,(ݕ,  = ݕ)ܨ    (ݔ,

and 

ାଶݔ      = ାଶݕ   ,(ାଵݕ,ାଵݔ)ܩ   = ,ାଵݕ)ܩ    (ାଵݔ

for all  ݊ ∈  ࣨ ∪ { 0 }. Then F  has a coupled best proximity point (ݎ, (ݏ ∈  ଶ   and G  has a coupled bestܣ  

proximity point (ݎᇱ , (ᇱݏ ∈  .ଶܤ  

Moreover, we have ݔ  → ݕ    ,ݎ   → ାଵݔ   ,ݏ   → ାଵݕ   ,′ݎ    →  .′ݏ 

Furthermore, if ݎ = ′ݎ and ݏ =  then ,′ݏ

,ݎ)݀    (′ݎ  + ,ݏ)݀  (′ݏ  =    .(ܤ,ܣ)݀ 

Proof : By Lemma-13, we get  ݀(ܶݔ (ାଵݔܶ,  →  ܶ൫݀(ܤ,ܣ)൯. Using Lemma-13, we have { ܶݔ} and { ܶݕ} 

are Cauchy sequences. Thus, there exists ݎ, ݏ ∈ ݔܶ such that ܣ   → ݕܶ   ,ݎܶ   →  .ݏܶ 

We obtain that 

   ܶ൫݀(ܤ,ܣ)൯  ≤ (ିଵݔܶ,ݎܶ)݀   ≤ + (ݔܶ,ݎܶ)݀   (2.5)   .(ିଵݔܶ,ݔܶ)݀ 

Letting ݊ → ∞ in (2.5), we have ݀(ܶݔܶ,ݎିଵ)  →  ܶ൫݀(ܤ,ܣ)൯. By a similar argument we also have 

ݏܶ)݀     (ିଵݕܶ,  →  ܶ൫݀(ܤ,ܣ)൯.  

It follows that 

     ݀൫ܶݔ,ܶݎ)ܨ, ൯(ݏ =  ݀൫ܶܩ(ݔିଵ,ݕିଵ),ܶݎ)ܨ,  ൯(ݏ

       ≤  ఈ 
ଶ

(ݎܶ,ିଵݔܶ)݀]  + [(ݏܶ,ିଵݕܶ)݀    +  (1 −  .((ܤ,ܣ)݀)ܶ( ߙ 

Taking  ݊ → ∞, we get ݀൫ܶݎ)ܨܶ,ݎ, ൯(ݏ  = ,ܣ)݀)ܶ   Similarly, we can prove that .((ܤ

     ݀൫ܶݏ)ܨܶ,ݏ, ൯(ݎ  =  ܶ൫݀(ܤ,ܣ)൯ 

Since T is injective mapping. 

Therefore, we have (ݎ,  .is a coupled best proximity point of F (ݏ

In similar way, we can prove that there exists ݎᇱ,ݏᇱ ∈ ାଵݔܶ  such that ܤ   → ାଵݕܶ and ′ݎ   →  Moreover, we .′ݏ 

have 

        ݀൫ܶݎᇱ,ܶݎ)ܩᇱ, ᇱ)൯ݏ  =  ܶ൫݀(ܤ,ܣ)൯,  

and 

     ݀൫ܶݏᇱ,ܶݏ)ܨᇱ, ᇱ)൯ݎ  =  ܶ൫݀(ܤ,ܣ)൯  

and so (ݎ′,  .is a coupled best proximity point of G  (′ݏ

Finally, we assume  that  ݎ = ′ݎ and ݏ =  and then we show that ′ݏ
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+  (′ݎܶ,ݎܶ)݀       = (ᇱݏܶ,ݏܶ)݀   2ܶ൫݀(ܤ,ܣ)൯. 

For all ݊ ∈  ܰ, we obtain that 

ݔܶ)݀       (ାଵݔܶ,   =   ݀൫ܶܩ(ݔିଵ,ݕିଵ),ܶݔ)ܨ  )൯ݕ,

      

 ≤  ఈ 
ଶ

(ݔܶ,ିଵݔܶ)݀ ] + [(ݕܶ,ିଵݕܶ)݀    + (1 −   .൯(ܤ,ܣ)൫݀ܶ( ߙ 

Letting  ݊ →∞, we have 

(′ݎܶ,ݎܶ)݀        ≤  ఈ 
ଶ

(ᇱݎܶ,ݎܶ)݀]  + [(ᇱݏܶ,ݏܶ)݀   +  (1 −  (2.6)   .((ܤ,ܣ)݀)ܶ ( ߙ 

For all ݊ ∈  ܰ,  we have 

ݕܶ)݀       (ାଵݕܶ,   =   ݀൫ܶܩ(ݕିଵ,ݔିଵ),ܶݕ)ܨ   )൯ݔ,

   

 ≤ ఈ 
ଶ

(ݕܶ,ିଵݕܶ)݀ ] + +  [(ݔܶ,ିଵݔܶ)݀    (1 −    .((ܤ,ܣ)݀)ܶ ( ߙ 

Letting  ݊ →∞, we have 

ݏܶ)݀      (ᇱݏܶ, ≤ ఈ 
ଶ

(ᇱݏܶ,ݏܶ)݀ ] + [(ᇱݎܶ,ݎܶ)݀  +  (1 −  (2.7)  .((ܤ,ܣ)݀)ܶ ( ߙ 

Similarly we can write, 

It follows from (2.6) and (2.7) that 

(ᇱݎܶ,ݎܶ)݀ + (ᇱݏܶ,ݏܶ)݀   ≤
 ߙ
2 (ᇱݎܶ,ݎܶ)݀]  + [(ᇱݏܶ,ݏܶ)݀    +  2(1 −  ((ܤ,ܣ)݀)ܶ( ߙ 

which implies that 

(′ݎܶ,ݎܶ)݀     + (′ݏܶ,ݏܶ)݀    ≤  (2.8)      .((ܤ,ܣ)݀)ܶ 2 

Since ܶ(݀(ܤ,ܣ))  ≤ ((ܤ,ܣ)݀)ܶ and (′ݎܶ,ݎܶ)݀   ≤  we have ,(′ݏܶ,ݏܶ)݀ 

(ᇱݎܶ,ݎܶ)݀    + (ᇱݏܶ,ݏܶ)݀  ≥       .((ܤ,ܣ)݀)ܶ 2 

From (2.7)and (2.8),we get 

(′ݎܶ,ݎܶ)݀     + (′ݏܶ,ݏܶ)݀    =  (2.9)     .((ܤ,ܣ)݀)ܶ 2  

Since T is injective mapping which implies 

,ݎ)݀    (′ݎ  + ,ݏ)݀  (′ݏ   =  (2.10)      .(ܤ,ܣ)݀ 2  

This completes the proof. 

Note that every pair of nonempty closed subsets A,B of a uniformly convex  Banach space X  such that A is 

convex satisfies the property UC. 

Therefore, we obtain the following corollary. 

 Corollary- 17 Let T be an ICS mapping such that ܶ: ܺ →  ܺ and  A and B be nonempty closed convex subsets 

of a uniformly convex Banach space ܺ,ܣ  :ܨ × →  ܣ  ×ܤ  :ܩ and ܤ  →  ܤ   and let the ordered pair (F,G) be ܣ 

a T- cyclic contraction. Let (ݔ,ݕ) ∈ ×ܣ    and define  ܣ 

ାଵݔ     = ݔ)ܨ  ,(ݕ, ାଶݔ  = ାଵݕ  and     ,(ାଵݕ,ାଵݔ)ܩ   = ,ݕ)ܨ  ,(ݔ ାଶݕ  =   (ାଵݔ,ାଵݕ)ܩ 

for all  ݊ ∈   ܰ∪ { 0} . Then F  has a coupled best proximity point (ݎ, (ݏ ∈ ܣ   ×  and G  has a coupled best   ܣ 

proximity point (ݎᇱ , (ᇱݏ ∈ × ܤ   .ܤ 

Moreover, we have ݔ  → ݕ   ,ݎ   → ାଵݔ   ,ݏ   → ାଵݕ    ,′ݎ    →   .′ݏ 

Furthermore, if ݎ = ′ݎ and ݏ =  then ,′ݏ

,ݎ)݀    (′ݎ  + ,ݏ)݀  (′ݏ  =   .(ܤ,ܣ)݀ 2 

Next, we give some illustrative example of Corollary -17. 
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Example- 18 Consider uniformly convex Banach space ܺ =  ܴ   with the usual norm. Let ܣ =  [1,2] and 

= ܤ  [−1,−2]. Thus ݀(ܤ,ܣ)  =  2. Define ܣ  :ܨ× →  ܣ  ܤ  :ܩ and ܤ  × →  ܤ   by ܣ 

,ݔ)ܨ   (ݕ = ି ଶ௫ ି ଷ௬  ି ଵ


   and   ݔ)ܩ, (ݕ = ି ଶ௫ ି ଷ௬  ା ଵ


.  

For arbitrary (ݕ,ݔ) ∈ ×ܣ   (ݒ,ݑ) and  ܣ  ∈ ܤ  × =   and fixed  ܤ  ଵ
ଷ
 and  ݍ = ଵ

ଶ
 we get 

,ݔ)ܨ)݀    ,ݑ)ܩ,(ݕ ((ݒ  =  ቚି ௫ ି ௬ ି  ଵ


 − ି ௨ ି ௩  ା ଵ


ቚ   

      ≤   ଶ|௫ି௨|ାଷ|௬ି௩|


+  ଵ

ଷ
  

        = ଵ
ଷ
+ (ݑ,ݔ)݀  ଵ

ଶ
,ݕ)݀ − ൫1 +  (ݒ )  +    (ܤ,ܣ)൯݀(ݍ

This implies that (F,G) is a cyclic contraction with ߙ  =  ଵ
ଶ
. Since A and B are closed convex, we have (A,B) 

and (B,A) satisfy the property ܷܥ∗. 

Therefore, all hypothesis of Corollary -17 hold. So F has a coupled best proximity point and G has a coupled 

best proximity point. We note that a point (1,1)  ∈ ×ܣ    is a unique coupled best proximity point of F and a  ܣ 

point (−1,−1) ∈ ×ܤ    is a unique coupled best proximity point of G. Furthermore, we get  ܤ 

    ݀(1,−1)  +  ݀(1,−1)   =  4 =   .(ܤ,ܣ)2݀ 

Next, we give the coupled best proximity point result in compact subsets of metric spaces. 

Theorem- 19 Let T be an ICS mapping such that  ܶ: ܺ →  ܺ and A and B be nonempty compact subsets of a 

metric space X, ܣ  :ܨ× →  ܣ  ×ܤ  :ܩ and ܤ  →  ܤ   .be a cyclic contraction (ܩ,ܨ) and let the ordered pair ܣ 

Let (ݔ,ݕ) ∈ ×ܣ    and define  ܣ 

ାଵݔ     = ,(ݕ,ݔ)ܨ  ାଶݔ  =   (ାଵݕ,ାଵݔ)ܩ 

ାଵݕ     = ,(ݔ,ݕ)ܨ  ାଶݕ  =   (ାଵݔ,ାଵݕ)ܩ 

for all  ݊ ∈  ܰ ∪ { 0 }. Then F  has a coupled best proximity point (ݎ, (ݏ ∈ ×ܣ    and G  has a coupled best   ܣ 

proximity point (ݎᇱ , (ᇱݏ ∈ ×ܤ    . ܤ 

Moreover, we have ݔ  → ݕ    ,ݎ   → ାଵݔ    ,ݏ  → ାଵݕ   ,′ݎ    →   .′ݏ 

Furthermore, if ݎ = ′ݎ and ݏ =  then ,′ݏ

,ݎ)݀      (′ݎ  + ,ݏ)݀  (′ݏ  =   .(ܤ,ܣ)݀ 2 

Proof : Since ݔ,ݕ ∈  and ܣ 

ାଵݔ      = ݔ)ܨ  ,(ݕ, ାଶݔ  =   (ାଵݕ,ାଵݔ)ܩ 

ାଵݕ      = ݕ)ܨ  , ,(ݔ ାଶݕ  =   (ାଵݔ,ାଵݕ)ܩ 

for all  ݊ ∈  ܰ∪ { 0 , we have ݔ ݕ, ∈ ାଵݕ,ାଵݔ and ܣ  ∈ ݊  for all ܣ  ∈   ܰ ∪ { 0 . As A is compact, the 

sequences { ݔ}  and { ݕ}  have convergent subsequences ൛ ݔೖൟ  and ൛ ݕೖൟ  respectively, such that  

ೖݔ    → ݎ  ∈ ೖݕ   ,ܣ  → ݏ  ∈   .ܣ 

Now, we have 

((ܤ,ܣ)݀)ܶ       ≤  ݀൫ܶݔܶ,ݎೖିଵ൯  ≤   ݀൫ܶݔܶ,ݎೖ൯  +  ݀൫ܶݔೖ  ೖିଵ൯ (2.11)ݔܶ,

By Lemma-13, we have ݀൫ܶݔೖ ೖିଵ൯ݔܶ,  →  ܶ൫݀(ܤ,ܣ)൯. 

Taking ݇ →  ∞  in (2.11), we get 

    ݀൫ܶݔܶ,ݎೖିଵ൯  →  ܶ൫݀(ܤ,ܣ)൯.  

By a similar argument we observe that 

    ݀൫ܶݔܶ,ݏೖିଵ൯  →   .((ܤ,ܣ)݀)ܶ 
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Note that 

    ܶ൫݀(ܤ,ܣ)൯   ≤   ݀ቀܶݔೖ ,ݎ)ܨܶ, ቁ(ݏ  =   ݀ቀܶܩ൫ݔೖିଵ,ݕೖିଵ൯,ܶݎ)ܨ,  ቁ(ݏ

   

    ≤ ఈ 
ଶ
ൣ ݀൫ܶݔೖିଵ,ܶݎ൯ +   ݀൫ܶݕೖିଵ,ܶݏ൯൧   + (1 −   .൯(ܤ,ܣ)൫݀ܶ( ߙ 

Taking  →  ∞ , we get ݀(ܶݎ)ܨܶ,ݎ, ((ݏ  =  Similarly, we can prove that .((ܤ,ܣ)݀)ܶ 

,ݏ)ܨܶ,ݏܶ)݀    ((ݎ  =   .((ܤ,ܣ)݀)ܶ 

 Thus F has a coupled best proximity (ݎ, (ݏ ∈ ×ܣ    In similar way, since B is compact, we can also prove . ܣ 

that G has a coupled best proximity point (ݎᇱ, (ᇱݏ ∈ ܤ   ×  For . ܤ 

+ (′ݎܶ,ݎܶ)݀     (′ݏܶ,ݏܶ)݀    =  2ܶ൫݀(ܤ,ܣ)൯  

 Since T is injective mapping. So we have 

,ݎ)݀     + (′ݎ ,ݏ)݀  (′ݏ   =   (ܤ,ܣ)2݀ 

 similar to the final step of the proof of Theorem-16. 

This completes the proof. 

 

 

3. Coupled Fixed Point Theorems 

In this section, we give the new coupled fixed point theorem for a cyclic contraction pair. 

Theorem- 20 Let T be an ICS mapping such that ܶ: ܺ →  ܺ also A and B be nonempty closed subsets of a 

metric space ܺ,ܣ  :ܨ× →  ܣ  ܤ  :ܩ and ܤ  × →  ܤ   .and let the ordered pair (F,G) be a T-cyclic contraction ܣ 

Let (ݔ,ݕ) ∈ ×ܣ    and define ܣ 

ାଵݔ     = ݔ)ܨ  ,(ݕ, ାଶݔ  =   (ାଵݕ,ାଵݔ)ܩ 

ାଵݕ     = ݕ)ܨ  , ,(ݔ ାଶݕ  =   (ାଵݔ,ାଵݕ)ܩ 

for all  ݊ ∈   ܰ∪ (ܤ,ܣ)݀ ݂ܫ  . {0 }  =  0, then F  has a coupled fixed point (ݎ, (ݏ ∈ ܣ  ×  ܣ 

and G  has a coupled fixed point (ݎᇱ, (ᇱݏ ∈ ܤ  ×  .ܤ 

Moreover, we have ݔ  → ݕ    ,ݎ   → ାଵݔ   ,ݏ   → ାଵݕ    ,′ݎ    →  .′ݏ 

Furthermore, if ݎ = ݏ and ′ݎ = ܣ) then F and G have a  common coupled fixed point in ,′ݏ ∩  .ଶ(ܤ 

Proof : Since ݀(ܤ,ܣ)  =  0, we  get (A,B) and (B,A) satisfy the property UC. 

Therefore, by Theorem- 16, we claim that F has a coupled best proximity point (ݎ, (ݏ ∈ ×ܣ     that is  ܣ 

,ݎ)ܨܶ,ݎܶ)݀    ((ݏ  = ,ݏ)ܨܶ,ݏܶ)݀  ((ݎ  =  (3.1)     ((ܤ,ܣ)݀)ܶ 

and G  has a coupled best proximity point (ݎᇱ, (ᇱݏ ∈ × ܤ     that is ܤ 

,′ݎ)ܩܶ,′ݎܶ)݀    ((′ݏ  = ,′ݏ)ܩܶ,′ݏܶ)݀  ((′ݎ  =  (3.2)    .((ܤ,ܣ)݀)ܶ 

From (3.1) and (ܤ,ܣ)  =  0 , we conclude that 

= ݎ    ,ݎ)ܨ  = ݏ   ,(ݏ ,ݏ)ܨ          .(ݎ

that is (ݎ, (ܤ,ܣ)݀ is a coupled fixed point of F. It follows from (3.2) and (ݏ  =  0, we get 

= ′ݎ    ,′ݎ)ܩ  = ′ݏ   ݀݊ܽ   ,(′ݏ ,′ݏ)ܩ    (′ݎ

that is (ݎ′,  .is a coupled fixed point of G (′ݏ

Next, we assume that ݎ = ݏ and ′ݎ =  and then we show that ′ݏ

F and G have a unique common coupled fixed point in (ܣ ∩  .ଶ(ܤ 

From Theorem-16, we get 
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(′ݎܶ,ݎܶ)݀     + (′ݏܶ,ݏܶ)݀    =  (3.3)     .((ܤ,ܣ)݀)ܶ 2  

Since ܶ(݀(ܤ,ܣ))  =  0, we get 

(′ݎܶ,ݎܶ)݀     + (′ݏܶ,ݏܶ)݀    =   0  

Since T is injective mapping.  

which implies that ݎ = = ݏ and ′ݎ   .′ݏ 

Therefore, we conclude that (ݎ, (ݏ ∈ ܣ)  ∩  .ଶ is common coupled fixed point of F  and G(ܤ 

Example- 21 Consider  ܺ =  ܴ  with the usual metric, ܣ =  [−2,0] and ܤ =  [0,2]. Define ܶ: ܺ → ×ܣ :ܨ, ܺ 

→  ܣ  ܤ:ܩ and ܤ  × →  ܤ  = ݔܶ by ܣ  ௫
ସ
  

,ݔ)ܨ    (ݕ =  − ଶ௫ ା ଶ௬ 
ହ

 and  (ݒ,ݑ)ܩ =  − ଶ௨ ା ଶ௩
ହ

.  

Then ݀(ܤ,ܣ)  =  0 and (F,G) is a T- cyclic contraction with ߙ  = ସ
ହ

. 

Indeed, for arbitrary (ݕ,ݔ) ∈ ×ܣ   ,ݑ) and  ܣ  (ݒ ∈ × ܤ    , ܤ 

we have 

,ݔ)ܨ)݀      ((ݒ,ݑ)ܩ,(ݕ =    ቚ − ଶ௫ ା ଶ௬ 
ହ

+ ଶ௨ ା ଶ௩ 
ହ

ቚ 

     ≤ ఈ 
ଶ

ݔܶ)݀]  (ݑܶ,  + [(ݒܶ,ݕܶ)݀   +  (1 −  .൯(ܤ,ܣ)൫݀ܶ( ߙ 

Therefore, all hypothesis of Theorem-20 hold. So F  and G  have a common coupled fixed point and this point is 

(0,0) ∈ ܣ)  ∩  .ଶ(ܤ 

If we take  ܣ =  .in Theorem – 20 then we get the following results ܤ 

Corollary- 22 Let T be an ICS mapping such that ܶ: ܺ →  ܺ  and A be a nonempty closed subset of a complete 

metric space ܺ,ܣ  :ܨ× →  ܣ  ×ܣ  :ܩ and ܣ  → ܣ   .and let the ordered pair (F,G) be a T-cyclic contraction ܣ 

Let (ݔ,ݕ) ∈ ×ܣ    and define  ܣ 

ାଵݔ    = ,ݔ)ܨ  ,(ݕ ାଵݕ  = ݕ)ܨ  ାଶݔ   )  andݔ,  = ,(ାଵݕ,ାଵݔ)ܩ  ାଶݕ  =   (ାଵݔ,ାଵݕ)ܩ 

for all  ݊ ∈ ܰ ∪ {  0 }. 

Then F has a coupled fixed point (ݎ, (ݏ ∈ ×ܣ  (ᇱݏ,ᇱݎ) and G  has a coupled fixed point ܣ  ∈ ×ܤ   ,Moreover .ܤ 

we have ݔ  → ݕ   ,ݎ   → ,ݏ  ାଵݔ   → ାଵݕ    ,′ݎ    → ݎ Furthermore, if .′ݏ  = ݏ and ′ݎ =   then F and G have a ,′ݏ

common coupled fixed point in A× A. We take F = G in Corollary-22  then we get the following results 

Corollary- 23  Let T be an ICS mapping such that ܶ: ܺ →  ܺ  and A be nonempty closed subsets of a complete 

metric space X,  ܣ  :ܨ× →  ܣ   and ܣ 

,ݔ)ܨܶ)݀     ((ݒ,ݑ)ܨܶ,(ݕ  ≤  ఈ  
ଶ

(ݑܶ,ݔܶ)݀]   +    [(ݒܶ,ݕܶ)݀  

for all (ݕ,ݔ), ,ݑ) (ݒ ∈ ×ܣ  ,ݎ) Then F  has a  coupled fixed point .  ܣ  (ݏ ∈ × ܣ    .ܣ 
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