

ON THE GIBBS PHENOMENON FOR NORLUND METHOD OF SUMMABILITY

Authors & Affiliation:

S. N. Singh

Department of Mathematics, Deoghar College, Deoghar-INDIA.

Correspondence To:

S. N. Singh

Key words:

Approximation,
Convergence,Fourier series,
Norlund summability.

© 2013. The Authors.

Published under Caribbean

Journal of Science and

Technology

ISSN 0799-3757

http://caribjscitech.com/

ABSTRACT

In this paper, we consider a monotonic non-increasing sequence $\{p_n\}$ and find the condition under which the Norlund summability method $(N,\,p_n)$ shows Gibbs phenomenon.

1. INTRODUCTION: In the theory of approximation, it is important to study about the limit of convergence of approximating function and the limit of approximant. The relating study for a discontinuous function $\phi(x)$, defined as $\phi(x) = (\pi - x)/2$, $0 < x < 2\pi$; = 0, x = 0, 2π , has been firstly investigated by J. W. Gibbs by taking partial sum $s_n(x)$ of the Fourier series of $\phi(x)$ in the neighbourhood of a point of discontinuity of $\phi(x)$. Since

we see that the series is not uniformly convergent in the neighbourhood of x = 0. Let x > 0, we have

$$s_n(x) = (-x/2) + \int\limits_0^x \, D_n(t) \; dt,$$

where $D_n(t) = \sin((n+1)/2)t/2\sin(t/2)$. Since the integral

$$\xi$$

$$(2/\pi) \int_{0}^{\xi} (\sinh t/t) dt, \qquad 0 \le \xi \le \pi,$$

$$d \xi, \text{ we have}$$

is uniformly bounded in n and ξ , we have

uniformly in $0 \le x \le \pi$. Thus $s_n(x)$ are uniformly bounded, but the curve of approximation overshoot the mark in the neighbourhood of x=0 in the interval $(0,\pi]$ (cf. Knopp [4], p.379 for n=9). The smoothening of convergence of Fourier series is quite important for filter design (cf. Hamming [2]). More precisely, we consider the integral of (sint/t) over the intervals $(k\pi, (k+1)\pi)$, $k=0,1,2,\ldots$ We know that these integrals decrease in absolute value and are of alternating sign (cf. Zygmund [5], p. 61) for $k=0,1,2,\ldots$, the curve

$$y = \int_{0}^{x} (\sin t/t) dt = G(x), \text{ say,}$$

takes maxima with $M_1 > M_3 > M_5 > ...$, at the points π , 3π , 5π , ..., and minima m_2 , $m_4 < m_6 < ...$, at the points 2π , 4π , 6π , From (1.1), we obtain

$$s_n(\pi/n) \to \int_0^{\pi} (\sin t/t) dt > (\pi/2).$$

Thus, though $s_n(x)$ tends to $\phi(x)$ at every fixed $x, \ 0 < x < 2\pi$, the curve $y = s_n(x)$, which pass through the point $(0, \ 0)$ condense to the interval $0 \le y \le G(\pi)$ of the y-axis, the ratio of whose length to that of the interval $0 \le y \le \phi(+0) = (\pi/2)$ is

$$(2/\pi) \int_{0}^{\pi} (\sin t/t) dt = 1.179...$$

Similarly, to the left of x=0, the curve $y=s_n(x)$ condense to the interval $-G(\pi) \le y \le 0$. This behaviour is called Gibbs phenomenon i.e., if the ratio $[s_n(+0)-s_n(0)]/[\phi(+0)-\phi(0)] > 1$, then $s_n(x)$ show Gibbs phenomenon in the right of x=0. The generalized form of Gibbs phenomenon is described in Zygmund ([5], p. 61). The Gibbs phenomenon for (C,α) method, $0<\alpha<1$, was studied by Zygmund ([5], p.110) and the following was obtained:

Theorem A. There is an absolute constant α_0 , $0 < \alpha_0 < 1$, with the following property: if f(x) has a simple discontinuity at a point ξ , the means $\sigma_n^{\alpha}(x; f)$ show Gibbs phenomenon at ξ for $\alpha < \alpha_0$ but not for $\alpha \ge \alpha_0$.

In this paper, we consider a more general method (N, p_n) than (C, α) method, $\alpha > -1$. The concerned (N, p_n) methods are those which sum the Fourier series at a point of discontinuity of the function. The following is due to Hille and Tamarkin [3]:

Theorem B. Let $\{p_n\}$ be a non-negative, non-increasing sequence and let $t_n(x)$ denote the (N, p_n) mean of $s_n(x)$. Then for $[f(x+t)+f(x-t)-\{f(x+0)+f(x-0)\}] = o(1)$, as $t \to 0$, then $t_n(x) \to (1/2)$ [f(x+0)+f(x-0)] if and only if

$$\Sigma (P_k/k) \le MP_n, \ n = 1, 2, ...,
k=1$$
(1.2)

where M is some positive constant. We know that the condition (1.2) for the sequence $\{p_n\}$ is equivalent to the condition (cf. Dikshit and Kumar [1]),

$$K \ge P_{m} \sum_{n=m}^{\infty} (1/nP_{n}), \tag{1.3}$$

where K is some positive constant. From Lemma 1, we find that the condition (1.3) is equivalent to $(P_k/P_n) \le (k/n)^{\alpha}$, $1 \le k \le n$, for some α in (0, 1). Thus, a condition of the above type is natural one for considering Gibbs phenomenon of (N, p_n) method. In fact, we prove the following theorem:

Theorem 1. Let $\{p_n\}$ be a non-negative and non-increasing sequence. Let α be a number such that $(P_k/P_n) \le (k/n)^{\alpha}$, $1 \le k \le n$, then there exists a constant α_0 , $0 < \alpha_0 < 1$ such that the (N, p_n) method shows Gibbs phenomenon for $\alpha < \alpha_0$, but not for $\alpha \ge \alpha_0$ at a point of simple discontinuity ξ of f(x).

We need the following lemmas:

Lemma 1. Let $\{p_n\}$ be a non-negative and non-increasing sequence and let

$$\begin{split} P_m & \sum_{n=m}^{\infty} (1/nP_n) \leq K, & m=1,\,2,\,..., \end{split} \label{eq:pm}$$

where K is some positive constant, then $(P_m/P_n) \le (m/n)^\delta$, for some $0 < \delta \le 1$, $1 \le m \le [n/c]$, c is some fixed positive integer.

Proof. For any integer k, we have

$$\geq (P_m/P_{km}) \log k$$
.

That is

$$(P_{km}/P_m) \ge (\log_4 k \log_4 k$$

We take for convenience $k_0 \ge 4$. For a given sufficiently large n, we can find a fixed integer $c \ge k_0$, and r such that

$$c^{r+(1/2)} m \le n < c^{r+1} m$$
.

We have

$$(P_n/P_m) = (P_n/P_c r_m)(P_c r_m/P_m) \ge (P_n/P_c r_m) 4^r, \tag{1.5}$$

by a repeated application of the fact that $P_{km}/P_m \ge 4$.

We can find a number μ , $(1/2) \le \mu < 1$, such that $n = c^{r+\mu}$ m. We have

$$r = \log_4(n/m)^{\delta} - \mu, \tag{1.6}$$

where $\delta = (1/\log_4 c)$. Obviously, $\delta \le 1$.

From (1.5) and (1.6), we get

$$(P_{n}/P_{m}) \ \geq \frac{P_{c}^{\ r+\mu}m}{P_{c}^{\ r}m} \ \log_{4}(n/m)^{\delta} - \mu \label{eq:power_power}$$

$$= \frac{P_c^{r+\mu}m}{P_c^rm} (4) (n/m)^{\delta}.$$
 (1.7)

Again from (1.3), we have

$$K \ge P_c^{\,r} m \qquad \sum_{\substack{n=c^r m}} (1/nPn)$$

$$P_c^r m$$

$$\geq \frac{1}{P_c^{r+\mu}m} \log c^{\mu}$$

that is

$$\frac{P_c^{r+\mu}m}{P_c^rm} \ge (\log c^{\mu}/K). \tag{1.8}$$

Now, from (1.7) and (1.8), we obtain

$$(P_{n}\!/\!P_{m}) \geq \frac{-logc^{\mu}}{K} 4^{-\mu} \left(n/m\right)^{\delta}$$

$$\geq 4\mu 4^{-\mu} (n/m)^{\delta} \geq (n/m)^{\delta},$$
 (1.9)

by the fact that $4^{\mu} \le 4\mu$, for $(1/2) \le \mu < 1$. Thus (1.9) shows that $(P_m/P_n) \le (m/n)^{\delta}$, $0 < \delta \le 1$, $1 \le m \le \lfloor n/c \rfloor$.

This proves the lemma.

Lemma 2. Given any m > 0, there exists a $\delta(m) > 0$ and $n_0(m)$ such that

$$\sigma_n(x) < (\pi/2) - \delta$$
 for $0 \le x \le (m/n), n > n_0$

Lemma 2 is contained in Zygmund ([5], p.111).

Proof of the Theorem. Since the partial sum $s_n(x)$ is uniformly summable (N, p_n) at every point of continuity (cf. Hille and Tamarkin [3]), so to prove the theorem, we prove it for the function $f(x) \sim \sin x + (\sin 2x/2) + ...$, at $\xi = 0$. Observing that $s_n' = \cos x + \cos 2x + ...$, we get

$$\begin{split} s_n(x) &= \int\limits_0^x & (\sum\limits_{k=1}^n coskt) \ dt \ = (\ (\pi-x)/2) - \int\limits_x^\pi D_n(t) dt, \end{split}$$

and

$$t_{n}^{\;p}(x) = ((\pi\text{-}x)/2) - (1/2P_{n}) \quad \begin{array}{ccc} n & \pi & & sin(k+(1/2))t \\ \sum & (\int & p_{n-k} & ----- & dt). \\ k=0 & x & & sin(t/2) \end{array}$$

We write

$$\begin{array}{ccc} & [n/2] & n \\ (1/2P_n) \, (& \Sigma & + & \Sigma \\ & k{=}0 & k{=}[n/2]{+}1 \end{array}) \, p_{n{-}k} (sin(k{+}(1/2)t)/sin(t/2))$$

$$=\Sigma_1+\Sigma_2, \text{ say.} \tag{1.10}$$

Applying Abel's Lemma, we find that

$$|\Sigma_1| \leq 1/n(\sin(t/2))^2,$$

Hence

$$|\int_{x}^{\pi} \Sigma_{1} dt | \leq (2/n) \cot(x/2).$$
(1.11)

Again using mean value theorem, we have for some $x < \xi < \pi$

$$\left| \int_{0}^{\infty} \Sigma_{2} dt \right| \leq K \left(P_{1/x} / n P_{n} \sin(x/2) \right), \tag{1.12}$$

since $P_{1/\xi} \le P_{1/x \text{ for } x < \xi}$.

Combining (1.10), (1.11) and (1.12), we get

$$t_n^p(x) \le (\pi - x)/2 + (2/n)\cot(x/2) + K(P_{1/x}/nP_n\sin(x/2)).$$
 (1.13)

By the hypothesis that $(P_k/P_n) \le (k/n)^{\alpha}$, $0 < \alpha < 1$, we see that the second term in (1.13) dominate the last term. Thus, if nx is sufficiently large, say nx > m, $n \ge n_1$ and nx² > 1, we find that

$$\left| \begin{array}{c} t_n^p(x) \end{array} \right| \le (\pi/2) \quad \text{for } (n/m) \le x \le \pi. \tag{1.14}$$

Now, we show that if the sequence $\{p_n\}$ is suitably chosen then the inequality (1.14) is true for other values of x, i.e., for $0 \le x \le (m/n)$. To see this, we consider $t_n^p(x) - \sigma_n(x)$, where $\sigma_n(x)$ denote the (C, 1) mean of $s_n(x)$, we have

$$\leq x \; \frac{n}{\Sigma} \; \frac{n - k + 1}{k = 0} \; \left(\; \frac{P_{n - k}}{n - k + 1} \; \frac{P_n}{n + 1} \; \right),$$

since (P_n/n) is non-increasing for $\{p_n\}$. We have

$$|t_n^p(x) - \sigma_n(x)| \le x [(P_n^1/P_n) - ((n+2)/2)].$$

Now,

$$(P_n^{1}/P_n) = \sum_{k=0}^{n} (P_k/P_n) = \sum_{k=0}^{n} \int_{k}^{k+1} (P_x/P_n) dx$$

$$\leq \int\limits_{0}^{n+1} (x/n)^{\alpha} dx = [(n+1)^{\alpha+1}/(\alpha+1)n^{\alpha}].$$

We have

$$\left|\begin{array}{cc} t_n{}^p(x) - \sigma_n(x) \,\right| \; \leq \; x \; [\begin{array}{cc} (n+1)^{\alpha+1} & n+2 \\ \hline (\alpha+1)n^{\alpha}] & - \end{array} \right]$$

$$=\frac{nx(1-\alpha)}{2(\alpha+1)} + x \left[\frac{(n+1)^{\alpha+1} - n^{\alpha+1}}{(\alpha+1)n^{\alpha}} - 1 \right].$$

Since $(n+1)^{\alpha+1} - n^{\alpha+1} \le (2n)^{\alpha}$ and $2^{\alpha} \le \alpha+1$ for $0 \le \alpha \le 1$, we have

$$\left| t_n^p(x) - \sigma_n(x) \right| \leq [nx(1-\alpha)/2(\alpha+1)].$$

That is

$$t_n^p(x) \le \sigma_n(x) + (nx/2)(1-\alpha).$$

By Lemma 2, we have

$$t_n^{\ p}(x) \ \leq \ (\pi/2) - \delta(m) + (m_1/2)(1-\alpha), \ 0 \leq nx \leq m_1.$$

Now, if we take α , such that $(1-\alpha)m_1/2 - \delta(m_1) < 0$, then

$$t_n^p(x) \leq (\pi/2)$$
, for $0 \leq nx \leq m_1$.

In order to show that for positive and small enough α , the Gibbs phenomenon occurs, and it does not occur for $\alpha \ge 1$, we consider the difference $t_n^p(x) - s_n(x)$. We have

$$\left| \ t_n^{\ p}(x) - s_n(x) \, \right| \, \leq \, x \, \left(n - (P_n^{\ 1}/P_n) \right) \, < \, n x \alpha.$$

Thus

$$\left| t_n^p(\pi/n) - s_n(\pi/n) \right| \le \pi\alpha,$$
 for $0 < \alpha < 1$.

Consequently,

$$s_n(\pi/n) - \pi\alpha \le t_n^p(\pi/n) \le \pi\alpha + s_n(\pi/n).$$

From the above inequality, we see that for small α

Lim inf
$$t_n^p(\pi/n) > (\pi/2)$$
, $n \rightarrow \infty$

by the fact that $s_n(\pi/n)$ tends to a limit greater than $(\pi/2)$.

Hence the Gibbs phenomenon occurs for small values of α . This proves that there exists α_0 , $0 < \alpha_0 < 1$, such that for $\alpha < \alpha_0$ the Gibbs phenomenon exists, while for $\alpha > \alpha_0$ it does not exist.

I would like to thank Professor Arun Kumar, Department of Mathematics, R. D. University, Jabalpur for his valuable comments and suggestions.

REFERENCES

- Dikhit H.P. and Kumar A., Absolute total effectiveness of (N, p_n) means I, Math. Proc. Camb. Phil. Soc. (1975), 77-103
- 2. Hamming, R. W., Digital Filters, Prentice-Hall, Englewood Cliffs, N. J., 1977.
- 3. Hille E. and Tamarkin J. D., On the Summabilty of Fourier Series I, Trans. Amer. Math. Soc. 34(1932), 757-783.
- 4. Knopp, K., Theory and Applications of Infinite Series, Blackie and Son Limited, London and Glasgow (1947).
- 5. Zygmund, A., Trigonometric Series Vol. -I, Cambridge University Press, London, New York (1968).