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ABSTRACT 
 
In this paper, we consider a monotonic non-increasing sequence {pn} and find the 
condition  under  which   the  Norlund  summability  method  (N, pn)   shows   Gibbs 
phenomenon. 
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1. INTRODUCTION: In the theory of approximation, it is important to study about the limit of convergence of approximating 
function and the limit of approximant. The relating study for a discontinuous function (x), defined as (x) = (-x)/2, 0 < x < 2; 
= 0, x = 0, 2, has been firstly investigated by J. W. Gibbs by taking partial sum sn(x) of the Fourier series of (x) in the 
neighbourhood of a point of discontinuity of (x). Since  
                                                     ∞ 
                                                         (sinkx)/k   = (-x)/2 = (x),                     0 < x < 2,           
                                                    k=1 
we see that the series is not uniformly convergent in the neighbourhood of x = 0. Let  x > 0, we have 
                                                                          x  
                                                 sn(x) = (-x/2) +   Dn(t) dt,   
                                                                        0 
 
where Dn(t) = sin((n+1)/2)t/2sin(t/2). Since the integral  
 
                                                             
                                                 (2/)    (sinnt/t) dt,                                 0    ,             
                                                          0    
    
is uniformly bounded in n and , we have 
                                                                          nx 
                                                  sn(x) +(x/2) =        (sint/t) dt + o(1),                                        (1.1) 
                                                                         0 
 uniformly in 0  x  . Thus sn(x) are uniformly bounded, but the curve of approximation overshoot the mark in the 
neighbourhood of  x = 0  in the interval  (0, ] ( cf. Knopp [4], p.379 for n = 9). The smoothening of convergence of Fourier series 
is quite important for filter design (cf. Hamming [2]). More precisely, we consider the integral of (sint/t) over the intervals (k, 
(k+1)), k = 0, 1, 2, …. We know that these integrals decrease in absolute value and are of alternating sign (cf. Zygmund [5], p. 
61) for k = 0, 1, 2, …, the curve 
 
                                                         x 
                                                  y =   (sint/t) dt = G(x), say,                                                     
                                                       0 
takes maxima with M1 > M3 >M5 > …, at  the points  , 3, 5, …, and minima m2, < m4 < m6 < …, at the points  2, 4, 6, …. 
From (1.1), we obtain 
                                                                            
                                                       sn(/n)      (sint/t) dt > (/2). 
                                                                         0 
Thus, though sn(x) tends to (x) at every fixed x, 0 < x < 2, the curve y = sn(x), which pass through the point (0, 0) condense to 
the interval 0  y  G() of the y-axis, the ratio of whose length to that of the interval 0  y  (+0) = (/2) is 
                                                                   
                                                       (2/)     (sint/t) dt = 1.179… . 
                                                                0 
Similarly, to the left of x = 0, the curve y = sn(x) condense to the interval G()  y  0.  This behaviour is called Gibbs 
phenomenon i.e., if the ratio [sn(+0)sn(0)]/[(+0)(0)] > 1, then sn(x) show Gibbs phenomenon in the right of x = 0. The 
generalized form of Gibbs phenomenon is described in Zygmund ([5], p. 61). The  Gibbs phenomenon for (C, ) method, 0 <  < 
1, was studied by Zygmund ([5], p.110) and the following was obtained:  
 
 Theorem A.  There is an absolute constant 0, 0 < 0 < 1, with the following property: if f(x) has a simple discontinuity 
at a point , the means  n

(x; f) show Gibbs phenomenon at  for  < 0 but not for   0. 
 
    In this paper, we consider a more general method (N, pn) than (C, ) method,  > 1. The concerned (N, pn) methods are 
those which sum the Fourier series at a point of discontinuity of the function. The following is due to Hille and Tamarkin [3]: 
 
 Theorem B. Let {pn} be a non-negative, non-increasing sequence and let tn(x) denote the (N, pn) mean of sn(x). Then for 
[f(x+t)+f(x-t){f(x+0)+f(x-0)}] = o(1), as t  0, then tn(x)  (1/2) [f(x+0)+f(x-0)]  if and only if  
                                                         n 
                                                          (Pk/k)  MPn, n =1, 2, …,                                                 (1.2) 
                                                       k=1 
where M is some positive constant. We know that the condition (1.2) for the sequence {pn} is equivalent to the condition (cf. 
Dikshit and Kumar [1]), 
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                                                                   ∞     
                                                        K  Pm      (1/nPn),                                                              (1.3) 
                                                                  n=m        
where K is some positive constant. From Lemma 1, we find that the condition (1.3) is equivalent to (Pk/Pn)  (k/n), 1  k  n, for 
some  in (0, 1). Thus, a condition of the above type is natural one for considering Gibbs phenomenon of (N, pn) method. In fact, 
we prove the following theorem: 
  
 Theorem 1.  Let {pn} be a non-negative and non-increasing sequence. Let   be a number such that (Pk/Pn)  (k/n),  1  
k  n, then there exists a constant 0, 0 < 0 < 1   such  that  the (N, pn) method shows Gibbs phenomenon for    < 0,  but not for  
  0  at a point of simple discontinuity    of  f(x).  
 
 We need the following  lemmas: 
 
 Lemma 1. Let {pn} be a non-negative and non-increasing sequence and let  
                                             ∞ 
                                       Pm      (1/nPn)  K,               m = 1, 2, …, 
                                            n=m 
 
where K is some positive constant, then (Pm/Pn)  (m/n) , for some  0 <   1,  1  m  [n/c],  
c is some fixed positive integer. 
 
 Proof. For any integer k, we have 
 
                                                        ∞                         km 
                                           K  Pm      (1/nPn)   Pm      (1/nPn) 
                                                       n=m                      n=m 
              
                                                (Pm/Pkm) logk. 
That is 
 
                                (Pkm/Pm)  (log4k log4e/K)  4, for large k  k0,                                         (1.4)   
  
We take for convenience k0  4. For a given sufficiently large n, we can find a fixed integer c  k0, and r such that 
                                             
                                            c r+(1/2) m    n  <  c r+1m. 
We have 
                                            (Pn/Pm) = (Pn/Pcrm)(Pcrm/Pm)  (Pn/Pcrm) 4r,                                   (1.5) 
    
by a repeated application of the fact that Pkm/Pm  4.  
 We can find a number , (1/2)   < 1, such that  n= c r+ m. We have 
 
                                                 r = log4(n/m),                                                                         (1.6) 
 
where  = (1/log4c). Obviously,   1. 
 
 From (1.5) and (1.6), we get  
 
                                                Pc

r+m      log4(n/m) 
                                  (Pn/Pm)        (4)  
                                                     Pc

rm 
 
       

                                                          Pc
r+m           

                                                   =       (4)      (n/m).                                                                                     (1.7) 
                                                           Pc

rm 
 
Again from (1.3), we have 
                                                               cr+m  
                                             K  Pc

rm            (1/nPn) 
                                                                   n=crm  
 
                                                          Pc

rm 
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                                                          logc,     
                                                           Pc

r+m  
that is  
                                                
                                   Pc

r+m 
                                     (logc/K).                                                                                              (1.8)    
                                    Pc

rm  
 
Now,  from (1.7) and (1.8), we obtain 
 
                                                               logc 
                                         (Pn/Pm)        4 (n/m) 
                                                                 K 
 
 
                                                          44 (n/m)   (n/m),                                                   (1.9) 
 
by the fact that   4  4, for (1/2)   < 1. Thus (1.9) shows that (Pm/Pn)   (m/n), 0 <   1,  
1  m  [n/c].  
 
           This proves the lemma. 
 
 Lemma 2. Given any m > 0, there exists a (m) > 0 and n0(m) such that 
 
                                              n(x)  <  (/2)      for  0    x   (m/n),  n > n0. 

 

 Lemma 2 is contained in Zygmund ([5], p.111). 
 
Proof of the Theorem.   Since the partial sum sn(x) is uniformly summable (N, pn) at every point of continuity (cf. Hille and 
Tamarkin [3]), so to prove the theorem, we prove it for the function f(x)  sinx + (sin2x/2) + …, at  = 0. Observing that sn’ = 
cosx + cos2x + …, we get 
 
                                                     x       n                                              
                                       sn(x) =      (     coskt) dt  =( (x)/2)      Dn(t)dt, 
                                                                            0       k=1                                          x 
         and 
                                                                                           n                      sin(k+(1/2))t 
                                      tn

p(x) = ((-x)/2)  (1/2Pn)       (       pnk       dt). 
                                                                                      k=0    x                  sin(t/2) 
 
We write 
                                                      [n/2]        n 
                                     (1/2Pn) (        +                ) pnk (sin(k+(1/2)t)/sin(t/2)) 
                                                       k=0         k=[n/2]+1 
 
 
                                      = 1 + 2, say.                                                                                                  (1.10) 
 
 
Applying Abel’s Lemma, we find that 
 
                                   1     1/n(sin(t/2))2,  
 
Hence 
 
                                
                               1 dt       (2/n) cot(x/2).                                                                                    (1.11) 
                             x 
 
Again using mean value theorem, we have for some   x <  <  
 
                                  



Research Article                                        S. N. Singh et al, Carib.j.SciTech,2013,Vol.1,166-171 

170 

                                2 dt     K ( P1/x/nPnsin(x/2)),                                                                      (1.12) 
                               0    
since   P1/  P1/x   for x < . 

 

 Combining (1.10), (1.11) and (1.12), we get 
 
 
             tn

p(x)    (x)/2  +  (2/n) cot(x/2)  +  K (P1/x/nPnsin(x/2)).                                               (1.13) 
 
 By the hypothesis that (Pk/Pn)    (k/n), 0 <  < 1, we see that the second term in (1.13) dominate the last term. Thus, if 
nx is sufficiently large, say nx > m, n  n1 and nx2 > 1, we find that  
 
                  tn

p(x)    (/2)   for (n/m)  x  .                                                                               (1.14) 
 
 Now, we show that if the sequence {pn} is suitably chosen then the inequality (1.14) is true for other values of x, i.e., for 
0  x  (m/n). To see this, we consider  tn

p(x) n(x), where n(x) denote the (C, 1) mean of sn(x), we have 
 
                                                      n      Pnk  sinkx            n    nk+1   sinkx   
   tnp(x) n(x)  =                                 
                                                     k=0      Pn        k            k=0   n+1         k 
 
 
                                                       n       n-k+1       Pn-k            Pn     
                                                 x            (        ), 
                                                       k=0     Pn          n-k+1     n+1 
 
since (Pn/n) is non-increasing for {pn}. We have 
 
                                 tn

p(x) n(x)   x [ (Pn
1/Pn)  ((n+2)/2)]. 

 
 
Now,                                              n                         n        k+1 
                                ( Pn

1/Pn)  =       (Pk/Pn)   =                  (Px/Pn) dx     
                                                      k=0                     k=0   k 
 
 
                                                    n+1  
                                                           (x/n) dx  = [ (n+1)+1/(+1)n]. 
                                                    0 
We have 
 
                                                           (n+1)+1         n+2   
                 tnp(x) n(x)     x [           ] 
                                                          (+1)n]          2 
 
                                                           
                                                  nx(1-)              (n+1)+1    n+1            
                                               =    +  x [        1]. 
                                                   2(+1)                     (+1)n 
 
Since (n+1)+1  n+1  (2n)  and  2   +1  for 0    1, we have 
 
 
                tn

p(x) n(x)      [nx(1)/2(+1)]. 
 
 
That is 
 
                                  tnp(x)     n(x) + (nx/2)(1). 
 
 
By Lemma 2, we have 



Research Article                                        S. N. Singh et al, Carib.j.SciTech,2013,Vol.1,166-171 

171 

 
                                      tn

p(x)      (/2)  (m) + (m1/2)(1),  0  nx  m1. 
 
Now, if we take  , such that  (1)m1/2  (m1) < 0, then 
 
 
                                        tn

p(x)      (/2),  for    0  nx  m1. 
 
 In order to show that for positive and small enough , the Gibbs  phenomenon occurs,  and it does not occur for   1, 
we consider the difference tn

p(x) sn(x). We have 
 
 
                                            tnp(x) sn(x)   x (n (Pn

1/Pn))  <  nx. 
 
Thus 
                                               tn

p(/n) sn(/n)    ,                 for 0 <  < 1. 
 
Consequently, 
 
                                               sn(/n)       tnp(/n)      + sn(/n). 
 
From the above inequality, we see that for small   
 
 
                                                 Lim inf  tn

p(/n)  > (/2), 
                                                 n∞ 
 
by the fact that  sn(/n) tends to a limit greater than (/2). 
 
Hence the Gibbs phenomenon occurs for small values of . This proves that there exists 0, 0 < 0 < 1, such that for  < 0 the 
Gibbs phenomenon exists, while for    > 0 it does not exist. 
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